PCQAP Monoclonal Antibody (M02), ARC/DRIP and May Function As a Transcriptional Clone 4A4 Coactivator in RNA Polymerase II Transcription

Total Page:16

File Type:pdf, Size:1020Kb

PCQAP Monoclonal Antibody (M02), ARC/DRIP and May Function As a Transcriptional Clone 4A4 Coactivator in RNA Polymerase II Transcription PCQAP monoclonal antibody (M02), ARC/DRIP and may function as a transcriptional clone 4A4 coactivator in RNA polymerase II transcription. This gene contains stretches of trinucleotide repeats and is Catalog Number: H00051586-M02 located in the chromosome 22 region which is deleted in DiGeorge syndrome. Two transcript variants encoding Regulation Status: For research use only (RUO) different isoforms have been found for this gene. [provided by RefSeq] Product Description: Mouse monoclonal antibody raised against a partial recombinant PCQAP. References: 1. MED19 and MED26 are synergistic functional targets Clone Name: 4A4 of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression. Ding N, Immunogen: PCQAP (NP_056973, 1 a.a. ~ 88 a.a) Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, partial recombinant protein with GST tag. MW of the Boyer TG. J Biol Chem. 2009 Jan 30;284(5):2648-56. GST tag alone is 26 KDa. Epub 2008 Dec 2. 2. TAZ controls Smad nucleocytoplasmic shuttling and Sequence: regulates human embryonic stem-cell self-renewal. MDVSGQETDWRSTAFRQKLVSQIEDAMRKAGVAHSK Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani SSKDMESHVFLKAKTRDEYLSLVARLIIHFRDIHNKKSQ R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, ASVSDPMNALQSL Wrana JL. Nat Cell Biol. 2008 Jul;10(7):837-48. Epub 2008 Jun 22. Host: Mouse Reactivity: Human Applications: ELISA, IF, S-ELISA, WB-Re (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Isotype: IgG2a Kappa Storage Buffer: In 1x PBS, pH 7.4 Storage Instruction: Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 51586 Gene Symbol: MED15 Gene Alias: ARC105, CAG7A, CTG7A, DKFZp686A2214, DKFZp762B1216, FLJ42282, FLJ42935, PCQAP, TIG-1, TIG1, TNRC7 Gene Summary: The protein encoded by this gene is a subunit of the multiprotein complexes PC2 and Page 1/1 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Supplementary Data
    Figure 2S 4 7 A - C 080125 CSCs 080418 CSCs - + IFN-a 48 h + IFN-a 48 h + IFN-a 72 h 6 + IFN-a 72 h 3 5 MRFI 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 7 B 13 080125 FBS - D 080418 FBS - + IFN-a 48 h 12 + IFN-a 48 h + IFN-a 72 h + IFN-a 72 h 6 080125 FBS 11 10 5 9 8 4 7 6 3 MRFI 5 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 Molecule Molecule FIGURE 4S FIGURE 5S Panel A Panel B FIGURE 6S A B C D Supplemental Results Table 1S. Modulation by IFN-α of APM in GBM CSC and FBS tumor cell lines. Molecule * Cell line IFN-α‡ HLA β2-m# HLA LMP TAP1 TAP2 class II A A HC§ 2 7 10 080125 CSCs - 1∞ (1) 3 (65) 2 (91) 1 (2) 6 (47) 2 (61) 1 (3) 1 (2) 1 (3) + 2 (81) 11 (80) 13 (99) 1 (3) 8 (88) 4 (91) 1 (2) 1 (3) 2 (68) 080125 FBS - 2 (81) 4 (63) 4 (83) 1 (3) 6 (80) 3 (67) 2 (86) 1 (3) 2 (75) + 2 (99) 14 (90) 7 (97) 5 (75) 7 (100) 6 (98) 2 (90) 1 (4) 3 (87) 080418 CSCs - 2 (51) 1 (1) 1 (3) 2 (47) 2 (83) 2 (54) 1 (4) 1 (2) 1 (3) + 2 (81) 3 (76) 5 (75) 2 (50) 2 (83) 3 (71) 1 (3) 2 (87) 1 (2) 080418 FBS - 1 (3) 3 (70) 2 (88) 1 (4) 3 (87) 2 (76) 1 (3) 1 (3) 1 (2) + 2 (78) 7 (98) 5 (99) 2 (94) 5 (100) 3 (100) 1 (4) 2 (100) 1 (2) 070104 CSCs - 1 (2) 1 (3) 1 (3) 2 (78) 1 (3) 1 (2) 1 (3) 1 (3) 1 (2) + 2 (98) 8 (100) 10 (88) 4 (89) 3 (98) 3 (94) 1 (4) 2 (86) 2 (79) * expression of APM molecules was evaluated by intracellular staining and cytofluorimetric analysis; ‡ cells were treatead or not (+/-) for 72 h with 1000 IU/ml of IFN-α; # β-2 microglobulin; § β-2 microglobulin-free HLA-A heavy chain; ∞ values are indicated as ratio between the mean of fluorescence intensity of cells stained with the selected mAb and that of the negative control; bold values indicate significant MRFI (≥ 2).
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Amwands 1.Pdf
    CHARACTERIZATION OF THE DYNAMIC INTERACTIONS OF TRANSCRIPTIONAL ACTIVATORS by Amberlyn M. Wands A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2010 Doctoral Committee: Associate Professor Anna K. Mapp, Chair Professor Hashim M. Al-Hashimi Professor E Neil G. Marsh Associate Professor Jorge A. Iñiguez-Lluhí Amberlyn M. Wands All rights reserved 2010 Acknowledgements I have so many people to thank for helping me throughout my graduate school career. First, I would like to thank my advisor Dr. Anna Mapp for all of the guidance you have given me, as well as allowing me the freedom to express myself as a scientist. Your patience and confidence in my abilities means a lot to me, and I promise to keep working on presenting myself to others in a positive yet assertive manner. I would also like to thank you for taking the time to instill in your students the importance of thinking and writing critically about scientific concepts, which I know we will carry with us into our future careers. Next I would like to thank my committee members for their time, and for always asking me challenging questions that made me look at my projects from a different perspective. I would also like to give a special thanks to Dr. Carol Fierke and Dr. John Hsieh for their willingness to work on a collaboration with people starting with a minimal background in the field of transient kinetics. Their love of solving kinetic problems is inspiring, and I appreciate being given the opportunity to work with them.
    [Show full text]
  • 2020 Program Book
    PROGRAM BOOK Note that TAGC was cancelled and held online with a different schedule and program. This document serves as a record of the original program designed for the in-person meeting. April 22–26, 2020 Gaylord National Resort & Convention Center Metro Washington, DC TABLE OF CONTENTS About the GSA ........................................................................................................................................................ 3 Conference Organizers ...........................................................................................................................................4 General Information ...............................................................................................................................................7 Mobile App ....................................................................................................................................................7 Registration, Badges, and Pre-ordered T-shirts .............................................................................................7 Oral Presenters: Speaker Ready Room - Camellia 4.......................................................................................7 Poster Sessions and Exhibits - Prince George’s Exhibition Hall ......................................................................7 GSA Central - Booth 520 ................................................................................................................................8 Internet Access ..............................................................................................................................................8
    [Show full text]
  • Genome-Wide Copy Number Variant Analysis For
    An et al. BMC Medical Genomics (2016) 9:2 DOI 10.1186/s12920-015-0163-4 RESEARCH ARTICLE Open Access Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population Yu An1,2,4, Wenyuan Duan3, Guoying Huang4, Xiaoli Chen5,LiLi5, Chenxia Nie6, Jia Hou4, Yonghao Gui4, Yiming Wu1, Feng Zhang2, Yiping Shen7, Bailin Wu1,4,7* and Hongyan Wang8* Abstract Background: Ventricular septal defects (VSDs) constitute the most prevalent congenital heart disease (CHD), occurs either in isolation (isolated VSD) or in combination with other cardiac defects (complex VSD). Copy number variation (CNV) has been highlighted as a possible contributing factor to the etiology of many congenital diseases. However, little is known concerning the involvement of CNVs in either isolated or complex VSDs. Methods: We analyzed 154 unrelated Chinese individuals with VSD by chromosomal microarray analysis. The subjects were recruited from four hospitals across China. Each case underwent clinical assessment to define the type of VSD, either isolated or complex VSD. CNVs detected were categorized into syndrom related CNVs, recurrent CNVs and rare CNVs. Genes encompassed by the CNVs were analyzed using enrichment and pathway analysis. Results: Among 154 probands, we identified 29 rare CNVs in 26 VSD patients (16.9 %, 26/154) and 8 syndrome-related CNVs in 8 VSD patients (5.2 %, 8/154). 12 of the detected 29 rare CNVs (41.3 %) were recurrently reported in DECIPHER or ISCA database as associated with either VSD or general heart disease. Fifteen genes (5 %, 15/285) within CNVs were associated with a broad spectrum of complicated CHD.
    [Show full text]
  • Genomic Signatures of Recent Adaptive Divergence in the Swamp Sparrow (Melospiza Georgiana)
    GENOMIC SIGNATURES OF RECENT ADAPTIVE DIVERGENCE IN THE SWAMP SPARROW (MELOSPIZA GEORGIANA) A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Petra Elizabeth Deane December 2017 © 2017 Petra Elizabeth Deane GENOMIC SIGNATURES OF RECENT ADAPTIVE DIVERGENCE IN THE SWAMP SPARROW (MELOSPIZA GEORGIANA) Petra Elizabeth Deane, Ph. D. Cornell University 2017 Populations that have recently diverged across sharp environmental gradients provide an opportunity to study the mechanisms by which natural selection drives adaptive divergence. Inland and coastal populations of the North American swamp sparrow (Melospiza georgiana) have become an emerging model system for studies of natural selection because they are morphologically and behaviorally distinct despite a very recent divergence time (<15,000 years), yet common garden experiments have demonstrated a genetic basis for their differences. I characterized genomic patterns of variation within and between inland and coastal swamp sparrows via reduced representation sequencing and demonstrated that background genomic differentiation (FST=0.02) and divergence (ΦST=0.05) between these populations is very low, rendering signatures of natural selection highly detectable (max FST=0.8). I then sequenced and assembled a de novo reference genome for the species and conducted a scan for genes involved in coastal adaptation, particularly the evolution of a deeper bill, darker plumage, and tolerance for salinity. I recovered a multigenic snapshot of adaptation via robust signatures of selection at 31 genes. As in Darwin’s finches, bone morphogenetic protein (BMP) signaling appears responsible for changes in bill depth, a putative magic trait for ecological speciation.
    [Show full text]
  • Structure and Mechanism of the RNA Polymerase II Transcription Machinery
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy.
    [Show full text]
  • 1 a Genome-Wide RNA Interference Screen Identifies New Regulators Of
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells Keren Imberg-Kazdan1 Susan Ha1,2 Alex Greenfield3 Christopher S. Poultney3^ Richard Bonneau3 Susan K. Logan1,2,4 Michael J. Garabedian2, 3,4 Departments of Biochemistry and Molecular Pharmacology1, Urology2, Microbiology4, and NYU Cancer Institute5, New York University School of Medicine, 550 First Avenue, New York, NY 10016; 3Center for Genomics and Systems Biology, New York University, New York, New York 10003 ^ present address: Seaver Autism Center for Research and Treatment, Department of Psychiatry, Mount Sinai Medical Center, New York, New York 10029 Corresponding Author: Michael J. Garabedian Department of Microbiology NYU School of Medicine 550 First Avenue, New York, NY 10016 Phone 212 263-7662 Fax 212 263-8276 Email: [email protected] Running Title: Genome-wide RNAi screen for AR regulators Keywords: Androgen receptor, RNAi screen, transcriptional regulation, HIPK2, MED19, Mediator complex, prostate cancer 1 Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells.
    [Show full text]
  • (Med19) Induces Apoptosis in Human Laryngocarcinoma Hep2 Cells in an Apaf-1-Dependent Pathway
    Am J Transl Res 2017;9(2):755-761 www.ajtr.org /ISSN:1943-8141/AJTR0038848 Original Article Down-regulation of mediator complex subunit 19 (Med19) induces apoptosis in human laryngocarcinoma HEp2 cells in an Apaf-1-dependent pathway Yan Zhao1*, Qingfeng Meng2*, Xu Gao3, Lihua Zhang1, Lixin An1 Departments of 1Allergy, 2Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China; 3Department of Biochemistry, Harbin Medical University, Harbin 150001, Heilongjiang Province, China. *Equal contributors. Received February 29, 2016; Accepted December 21, 2016; Epub February 15, 2017; Published February 28, 2017 Abstract: Mediator 19 (Med19) is a component of the mediator complex which is a co-activator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays im- portant roles in cancer cell proliferation and tumorigenesis. The physiological mechanism by which Med19 exerts its promoting effects in laryngocarcinoma is not yet fully understood. Here, we found that the expression of Med19 was increased in laryngocarcinoma samples from patients compared to normal bone tissues. Med19 knockdown significantly induced growth inhibition and suppressed migration in the HEp2 cell lines. Med19 knockdown also induced apoptosis in HEp2 cells via activation of caspase-3, 9 and Apaf-1. In addition, The tumorigenicity of Med19 short hairpin RNA (shRNA)-expressing cells were decreased after inoculating into nude mice. Taken together, our data suggest that Med19 acts as an oncogene in laryngocarcinoma via a possible caspase modulation pathway. Keywords: Apoptosis, laryngocarcinoma, proliferation, Med19, caspase Introduction strated to be a component of the Mediator com- plex [8] and is essential for mediator binding laryngocarcinoma is among the most common and its activation of RNA Pol II [9, 10].
    [Show full text]
  • Functional Studies of the Yeast Med5, Med15 and Med16 Mediator Tail Subunits
    Functional Studies of the Yeast Med5, Med15 and Med16 Mediator Tail Subunits Miriam Larsson1, Hanna Uvell1¤a, Jenny Sandstro¨ m1, Patrik Ryde´n2, Luke A. Selth3¤b, Stefan Bjo¨ rklund1* 1 Department of Medical Biochemistry and Biophysics, Umea˚ University, Umea˚, Sweden, 2 Department of Statistics, Umea˚ University, Umea˚, Sweden, 3 Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, United Kingdom Abstract The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/ MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature-sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when Med5/15 or Med15/16 are inactivated together. We identify 25 genes in each double mutant that show a significant change in expression when compared to the corresponding single mutants and to the wild type strain. Importantly, 13 of the 25 identified genes are common for both double mutants. We also find that all strains in which MED15 is inactivated show down-regulation of genes that have been identified as targets for the Ace2 transcriptional activator protein, which is important for progression through the G1 phase of the cell cycle.
    [Show full text]
  • A Catalog of Hemizygous Variation in 127 22Q11 Deletion Patients
    A catalog of hemizygous variation in 127 22q11 deletion patients. Matthew S Hestand, KU Leuven, Belgium Beata A Nowakowska, KU Leuven, Belgium Elfi Vergaelen, KU Leuven, Belgium Jeroen Van Houdt, KU Leuven, Belgium Luc Dehaspe, UZ Leuven, Belgium Joshua A Suhl, Emory University Jurgen Del-Favero, University of Antwerp Geert Mortier, Antwerp University Hospital Elaine Zackai, The Children's Hospital of Philadelphia Ann Swillen, KU Leuven, Belgium Only first 10 authors above; see publication for full author list. Journal Title: Human Genome Variation Volume: Volume 3 Publisher: Nature Publishing Group: Open Access Journals - Option B | 2016-01-14, Pages 15065-15065 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1038/hgv.2015.65 Permanent URL: https://pid.emory.edu/ark:/25593/rncxx Final published version: http://dx.doi.org/10.1038/hgv.2015.65 Copyright information: © 2016 Official journal of the Japan Society of Human Genetics This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). Accessed September 28, 2021 7:41 PM EDT OPEN Citation: Human Genome Variation (2016) 3, 15065; doi:10.1038/hgv.2015.65 Official journal of the Japan Society of Human Genetics 2054-345X/16 www.nature.com/hgv ARTICLE A catalog of hemizygous variation in 127 22q11 deletion patients Matthew S Hestand1, Beata A Nowakowska1,2,Elfi Vergaelen1, Jeroen Van Houdt1,3, Luc Dehaspe3, Joshua A Suhl4, Jurgen Del-Favero5, Geert Mortier6, Elaine Zackai7,8, Ann Swillen1, Koenraad Devriendt1, Raquel E Gur8, Donna M McDonald-McGinn7,8, Stephen T Warren4, Beverly S Emanuel7,8 and Joris R Vermeesch1 The 22q11.2 deletion syndrome is the most common microdeletion disorder, with wide phenotypic variability.
    [Show full text]
  • Nuclear Receptor-Like Transcription Factors in Fungi
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Nuclear receptor-like transcription factors in fungi Anders M. Na¨a¨r2 and Jitendra K. Thakur1 Massachusetts General Hospital Cancer Center and Department of Cell Biology, Harvard Medical School, Charlestown, Massachusetts 02129, USA Members of the metazoan nuclear receptor superfamily development, reproduction, aging, and metabolism. Mem- regulate gene expression programs in response to binding bers of the nuclear receptor superfamily share common of cognate lipophilic ligands. Evolutionary studies using domain architecture, including a highly conserved zinc- bioinformatics tools have concluded that lower eukar- coordinating DNA-binding domain and a structurally yotes, such as fungi, lack nuclear receptor homologs. conserved ligand-binding domain. Nuclear receptors Here we review recent discoveries suggesting that mem- were first identified as steroid and thyroid hormone bers of the fungal zinc cluster family of transcription receptors and were initially thought to serve solely as regulators represent functional analogs of metazoan endocrine signal transducers (Mangelsdorf et al. 1995). nuclear receptors. These findings indicate that nuclear Subsequent work based on DNA sequence similarity receptor-like ligand-dependent gene regulatory mecha- with steroid receptors revealed a number of ‘‘orphan’’ nisms emerged early during eukaryotic evolution, and nuclear receptors; i.e., receptors for which ligands were provide the impetus for further detailed studies of the unknown. Many of these orphan receptors have now possible evolutionary and mechanistic relationships of been found to bind and respond to environmental as well fungal zinc cluster transcription factors and metazoan as endogenous small molecules and metabolites, includ- nuclear receptors.
    [Show full text]