Eindhoven University of Technology MASTER Bokode Based Fiducial

Total Page:16

File Type:pdf, Size:1020Kb

Eindhoven University of Technology MASTER Bokode Based Fiducial Eindhoven University of Technology MASTER Bokode based fiducial augmented reality system Salunkhe, H.L. Award date: 2011 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Mathematics and Computer Science Den Dolech 2, 5612 AZ Eindhoven P.O. Box 513, 5600 MB Eindhoven The Netherlands Author Hrishikesh Salunkhe Bokode Based Fiducial Augmented Reality Date System August 25, 2011 Author: Hrishikesh Salunkhe Supervisors: Prof. Dr. Gerard de Haan (TU/e) Ir. Frits de Bruijn(Philips Research) Ing. Harold Schmeitz(Philips Research) Where innovation starts Acknowledgments I have worked with a great number of people whose contribution in assorted ways to the research and the making of the thesis deserve special mention. It is a pleasure to convey my gratitude to them all in my humble acknowledgements. First and foremost I offer my sincerest gratitude to my three supervisors, Prof. Dr. Gerard de Haan, Frits de Bruijn and Harold Schmeitz, who have supported me throughout my thesis with patience and knowledge while allowing me the room to work in my own way. I attribute the level of my Masters degree to their encouragement and effort and without them this thesis would not have been completed. My university supervisor, Dr. Gerard de Haan has helped me to evolve from a mere student into a com- petitive, ambitious and research oriented master student. His systematic supervision has lead into a productive, research oriented and timely completion of my thesis. I could never have embarked and started all of this without his prior teachings in video and image processing and thus opened up exciting and challenging areas to me. His advice and guidance through the timely meetings and discussion has led me to manage my entire graduation process efficiently and seamlessly. I gratefully thank my two company supervisors Frits de Bruijn and Harold Schmeitz for giving me extraor- dinary experiences through out the work. Above all and the most needed, they provided me encouragement and support in various ways. Their truly scientist intuition has made them as a constant oasis of ideas and passions in science, which exceptionally inspire and enrich my growth as a student, a researcher and a scientist want to be. Their involvement and guidance has triggered and nourished my intellectual maturity that I will benefit from, for a long time to come. I am indebted to them more than they know. I gratefully thank Kees van Berkel, my defence committee member, for his constructive comments on this thesis. I am thankful that in the midst of all his activity, he accepted to be a member of the defence committee. I am grateful to him in every possible way and hope to keep up our collaboration in the future as a PhD candidate. I am much indebted to Mukul Rocque and Sachin Bhardwaj for their valuable suggestions and advice in discussion and ideas and, furthermore, using their precious times to read this thesis and giving critical comments about it. Words fail me to express my appreciation to my parents. My family members deserve special mention for their inseparable support and prayers. Their dedication, love and persistent confidence in me, has taken the load off my shoulder and without their support nothing would have been possible. Finally, I would like to thank everybody who was important and helpful to the successful realization of my thesis, as well as expressing my apology that I could not mention personally one by one. Abstract Augmented Reality (AR) is one of the latest developments in the field of human-computer interaction (HCI) that employs the marker based video tracking. Generally, an AR system makes use of 2D fiducial markers that are mounted on a specific object, to compute the pose of the object. AR systems primarily rely on the fiducial marker tracking and its shape approximation to estimate the object pose to facilitate an accurate registration of a virtual world. This conventional method suffers from several drawbacks such as lesser accuracy and small distance range of detectability. A novel Bokode based approach, introduced by the Massachusetts Institute of Technology (MIT), intends to eliminate these drawbacks. The Bokode is a tiny device, that consists of a pattern and a lens-let. The Bokode pattern is made up of fiducial markers, that encode the Bokode pose. It uses the principle of the Bokeh effect, along with the lens-let, to magnify the Bokode pattern that appears sharp on the camera sensor when the camera is configured in out of focus mode. The research at MIT, shows that the Bokode based pose estimation method enables to detect the tag from larger distances. The thesis work carried out at Philips Research, Eindhoven analyses the Bokode technique and its mech- anism in detail. It also derives and analyses relations among various critical Bokode based parameters that influence the performance and precision of the system. Furthermore, the entire Bokode based fiducial aug- mented reality system is designed and implemented using several designed Bokode patterns in Matlab. Various experiments are conducted in order to determine the distance range, accuracy and robustness of the system. For the current implementation, the Bokode can be detected from the distance of 2:12meters with the worst-case error of 6 ◦ in viewing (orientation) angles. The Bokode can be used in pose estimation applications that demand an accurate pose estimation with the detection from large distances. Keywords - Video Tracking, Augmented Reality, Fiducial Marker, Pose Estimation, Bokode. Contents 1 Introduction 1 1.1 Background.............................................1 1.2 Related Work............................................2 1.2.1 Fiducial Markers......................................2 1.2.2 Augmented Reality.....................................3 1.2.3 Bokode...........................................5 1.3 Problem Description........................................6 1.4 Report Organization.........................................6 2 Theory and Analysis 7 2.1 Bokode...............................................7 2.1.1 Bokeh Effect........................................7 2.1.2 Focusing at infinity.....................................8 2.2 Pose Estimation...........................................9 2.2.1 Conventional Method....................................9 2.2.2 Bokode Based Method................................... 10 2.2.2.1 Spherical Coordinate system.......................... 10 2.2.2.2 Bokode Pattern Encoding............................ 11 2.2.2.3 Bokode Decoding................................ 11 2.2.2.4 Angular Decoding................................ 11 2.2.2.5 Distance Computation.............................. 13 2.3 Bokode Pattern Selection...................................... 14 2.3.1 QR Codes.......................................... 14 2.3.2 Data Matrix......................................... 15 2.3.3 Binary De Bruijn Codes.................................. 16 2.3.4 Manchester encoded Binary De Bruijn Codes....................... 18 2.3.5 Comparison......................................... 20 2.4 Bokode Parameters......................................... 20 2.4.1 Resolution limit....................................... 21 2.4.2 Minimal Optical Window Size............................... 22 2.4.3 Redundancy......................................... 23 2.4.4 Module Size........................................ 23 2.4.5 Minimal Marker Size.................................... 24 2.4.6 Magnification........................................ 24 i 3 Implementation 26 3.1 Pattern Generation......................................... 27 3.1.1 Specification........................................ 27 3.1.2 Generation......................................... 27 3.1.2.1 ZXing Library.................................. 27 3.1.2.2 Bokode patterns................................. 28 3.2 Bokode Realization......................................... 29 3.2.1 Setup............................................ 29 3.2.2 Analysis.......................................... 30 3.3 Bokode Pattern Detection and Decoding.............................. 31 3.3.1 Pattern Detection...................................... 31 3.3.1.1 QR Code Detector................................ 31 3.3.1.2 Data Matrix Detector.............................. 32 3.3.1.3 Binary De Bruijn Detector............................ 32 3.3.1.4 Manchester encoded Binary De Bruijn Detector................ 37 3.3.2 Pattern Decoding...................................... 37 3.3.2.1 QR Code Decoder................................ 37 3.3.2.2 Data Matrix Decoder.............................
Recommended publications
  • Tracciabilità Automatica
    Tracciabilità automatica Davide Quaglia Sommario • Introduzione • Tag attivi – Definizioni – Standard esistenti – Problematiche • Lo standard EPCGlobal • I codici a barre – Principio di funzionamento – Standard esistenti • Tag passivi o RFID – Principio di funzionamento – Tipologie – Limiti 2 Definizioni • norma ISO 8402 e ISO 9000 dove per tracciabilità si intende: – “la capacità di risalire alla storia ed all’uso o alla localizzazione di una entità mediante identificazioni registrate” 3 Definizioni • Determinazione dell'evoluzione dello stato di un oggetto nel tempo – Identificazione automatica di un oggetto – Raccolta di dati dell'oggetto → stato • posizione • altre informazioni dipendenti dall'applicazione (es. lotto di produzione, temperatura, ecc...) – Tracciamento del cambiamento di stato • istante di tempo – Immissione automatica in un sistema di elaborazione – Eventuale validazione dell'evoluzione rispetto ad un modello 4 Definizioni (2) • Terminologia internazionale – Automatic Identification & Data Capture (AIDC) – Real Time Location Systems (RTLS) – Traceability 5 Vantaggi di AIDC • Affidabilità – Si evitano errori di inserimento manuale di dati • Efficienza – Acquisizione dati con velocità maggiore rispetto all'immissione manuale --> maggiore throughput • Pervasività – Il tracciamento non interferisce con le attività principali (guida, manipolazione, ecc...) – Limitazione della manipolazione, ad es., per evitare contaminazione (in entrambe le direzioni) 6 Tracciabilità in laboratorio • Identificazione – reagenti (per non confondersi)
    [Show full text]
  • MAKING REALITY REALLY REAL Ascott | Gangvik | Jahrmann TEKS
    MAKING REALITY REALLY REAL Interactions between the arts, technology, and the sciences, specially in respect of the mind and consciousness, are leading to the emergence of new artistic forms, technological systems, and cultural behaviours, as well as to re-evaluation of the hegemony of western M AKING science, and the significance, both spiritually and materially, of the practices and paradigms of other societies. Over the past eleven years, the Consciousness Reframed conferences have been convened in Europe and the Far East, involving leading-edge artists, scientists and scholars in an emergent discourse that is transdisciplinary, transcultural and syncretic. This year, hosted by TEKS, and as part of the Meta.Morf biennial of art and technology, an international REAL ITY group of experts met in this context, under the rubric Making Reality Really Real. Some 60 provocative, visionary, poetic and pragmatic perspectives, proposals and projects are published here, including papers by Roy Ascott, Marco Bischof, James Gimzewski, Luis Eduardo Luna, Ryohei Nakatsu and Victoria Vesna. RE ALLY Ascott | Gangvik Jahrmann R EAL Consciousness reframed www.teks.no TEKS Ascott/Gangvik/Jahrmann (eds.) MAKING REALITY REALLY REAL MAKING REALITY REALLY REAL Reflections on Art, Technology and Consciousness EDITORS: Roy Ascott | Espen Gangvik | Margarete Jahrmann THE 11TH ANNUAL INTERNATIONAL ReSEARCH CONFERENCE, CONSCIOUSNESS ReFRAMED: Art And consciousness in the post-biologicAl erA, MAking reAlity reAlly reAl. Trondheim 2010 Convened by Espen Gangvik Director, Trondheim Electronic Arts Centre teks.no November 4–6, 2010 C ONFEREN E DIRECTOR Roy Ascott President, Planetary Collegium p rogrAMMe coMMittee Marco Bischof Espen Gangvik James Gimzewski Margarete Jahrmann Luis Eduardo Luna Roger Malina Ryohei Nakatsu Victoria Vesna Chair: Roy Ascott C ontents Editors This work is subject to Copyright images: This book is made possible I NTRODUCTION copyright.
    [Show full text]
  • Monografías Electrónicas S.E.A ISSN: 2386-5318 6
    nº Monografías electrónicas S.E.A ISSN: 2386-5318 6 Los códigos gráficos y su procesado dinámico aplicado a la entomología. Graphics codes and applied entomology dynamic processing. Rafael Magro Sociedad Entomológica Aragonesa www.sea-entomologia.org Zaragoza, 30-06-2014 Rafael Magro Monografías electrónicas S.E.A. nº 6 Los códigos gráficos y su procesado dinámico aplicado a la entomología. Graphics codes and applied entomology dynamic processing. Rafael Magro Sociedad Entomológica Aragonesa www.sea-entomologia.org Zaragoza, 30-06-2014 1 Los códigos gráficos y su procesado dinámico aplicado a la entomología. Monografías electrónicas. Sociedad Entomológica Aragonesa 6: 30/06/2014. Los códigos gráficos y su procesado dinámico aplicado a la entomología. Rafael Magro [email protected] Resumen: En este trabajo se enumeran los métodos más usuales para el procesado de códigos 1 D y 2D. Se incluye una breve descripción de los tipos y la tecnología necesaria para la lectura óptica inalámbrica y sus posibles usos en biología y entomología. Exponemos las condiciones ideales para la correcta adquisición visual del valor de los símbolos impresos en micro-etiquetas y detallamos los errores más frecuentes de impresión, color e imagen. Se registra el tiempo de codificación y decodificación en relación con el contingente de caracteres numéricos y alfa- numéricos encriptados en el vector y su tamaño. Explicamos de qué manera los datos obtenidos se tratan de forma dinámica y vinculada a la algoritmia de los aplicativos con acceso a tablas de datos, listas y otros procedimientos. Se adjunta código fuente y se pormenorizan las partes más importantes. Palabras clave: Códigos 1D-2D, algoritmos, entomología.
    [Show full text]
  • Theory and Applications of Marker-Based Augmented Reality Sanni Siltanen
    IENCE C • •S T S E N C O H I N S O I V L • 3 O S G T Y H • R G I E L S H E G A I R H C H Theory and applications of marker-based augmented reality Sanni Siltanen VTT SCIENCE 3 Theory and applications of marker-based augmented reality Sanni Siltanen ISBN 978-951-38-7449-0 (soft back ed.) ISSN 2242-119X (soft back ed.) ISBN 978-951-38-7450-6 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2012 JULKAISIJA – UTGIVARE – PUBLISHER VTT PL 1000 (Vuorimiehentie 5, Espoo) 02044 VTT Puh. 020 722 111, faksi 020 722 4374 VTT PB 1000 (Bergsmansvägen 5, Esbo) FI-2044 VTT Tfn. +358 20 722 111, telefax +358 20 722 4374 VTT Technical Research Centre of Finland P.O. Box 1000 (Vuorimiehentie 5, Espoo) FI-02044 VTT, Finland Tel. +358 20 722 111, fax + 358 20 722 4374 Kopijyvä Oy, Kuopio 2012 Theory and applications of marker-based augmented reality [Markkeriperustaisen lisätyn todellisuuden teoria ja sovellukset]. Sanni Siltanen. Espoo 2012. VTT Science 3. 198 p. + app. 43 p. Abstract Augmented Reality (AR) employs computer vision, image processing and comput- er graphics techniques to merge digital content into the real world. It enables real- time interaction between the user, real objects and virtual objects. AR can, for example, be used to embed 3D graphics into a video in such a way as if the virtual elements were part of the real environment.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,697.446 B2 Perret Et Al
    US009697446B2 (12) United States Patent (10) Patent No.: US 9,697.446 B2 Perret et al. (45) Date of Patent: Jul. 4, 2017 (54) ITEM COMPRISING A BARCODE WITH AN (58) Field of Classification Search ELECTROMAGNETC SIGNATURE CPC ............... G06K 7/1465; G06K 7/1439; G06K (71) Applicants: Arjowiggins Security, Boulogne 2007/10524; G06K 2007/10504;20/208 G06Q Billancourt (FR); Institut See application file for complete search history. Polytechnique de Grenoble, Grenoble (FR) (56) References Cited (72) Inventors: Etienne Perret, Valence (FR); Arnaud Vena, Guilherand Granges (FR); Smail U.S. PATENT DOCUMENTS Tedjini, Beaumont les Valence (FR): Yann Boutant, Chindrieux (FR); 2004/0245.343 A1 12/2004 Depta Christophe Halope, Cannes (FR) 2005/0284.941 A1 12/2005 Lubow (Continued) (73) Assignees: Institut Polytechnique de Grenoble, Grenoble (FR); Arjowiggins Security, FOREIGN PATENT DOCUMENTS Boulogne Billancourt (FR) EP 1065623 A2 1, 2001 (*) Notice: Subject to any disclaimer, the term of this EP 1675040 A1 6, 2006 patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/575,003 International Search Report and Written Opinion of PCT/IB2013/ (22) Filed: Dec. 18, 2014 O55218. (Continued) (65) Prior Publication Data US 2015/O102105 A1 Apr. 16, 2015 Primary Examiner — Kristy A Haupt Related U.S. Application Data (74) Attorney, Agent, or Firm — Jones Robb, PLLC (63) Continuation of application No. PCT/IB2013/055218, filed on Jun. 25, 2013. (57) ABSTRACT (30) Foreign Application Priority Data The present invention relates to a set of security documents. Each security document within the set having an optical Jun.
    [Show full text]