Chapter 1 LITERATURE REVIEW 1.1 Nectarivore Communities

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 LITERATURE REVIEW 1.1 Nectarivore Communities Chapter 1 LITERATURE REVIEW 1.1 Nectarivore communities There is considerable debate regarding the role of competition in producing patterns of niche partitioning in ecological communities (e.g. Connell 1983; Roughgarden 1983; Simberloff 1983; Stong Jr. 1983; Mac Nally 1995; Walter and Paterson 1995; Wisheu 1998; Gordon 2000; Mac Nally 2000). Competition is thought to refine the niche of a species when two or more species compete for some resource that is limiting. Natural selection favours conspecifics that compete less with individuals of other species, tending to widen any niche separation between the competing species. There are a number of lines of argument against niches being competitively structured: individualistic, logical structure and lack of field evidence (Gordon 2000). The individualistic argument suggests that species have individual tolerances, preferences and limitations in relation to environmental gradients that govern their distribution and abundance, not pressure from sympatric species (e.g. Stong Jr. 1983). The logical structure argument attacked the idea of competitively structured communities, suggesting that studies had failed to adequately discount a ‘null’ hypothesis that communities are actually assembled at random from species in a regional pool (e.g. Simberloff 1983). Finally, reviews of field evidence suggested that other factors are more important in limiting the growth of natural populations, such as predation, parasites and environmental heterogeneity (e.g. Connell 1983). Despite the arguments of the previous paragraph, studies of nectarivore communities usually invoke competition as the driving force behind community organisation (e.g. Keast 1968a; Ford and Paton 1976b; Lyon 1976; Ford 1977; Ford and Paton 1977; Ford 1979; Feinsinger et al. 1985; McFarland 1986a). In the case of nectarivore communities, competition does appear justified as the primary factor in structuring communities. This is partly due to obvious interference competition, particularly by the larger species within the community, and partly due to the fact that nectar is often a resource in demand by all the component species, and has been shown to be inadequate to meet the requirements of the local nectarivore community at least temporarily (Ford 1977; 1979; Feinsinger et al. 1985; McFarland 1986a; Armstrong 1991). Particularly in Australian systems there are likely to be a number of different nectarivore species 1 attempting to access nectar from the same plant at any one time. Two factors contribute to this shared preference for nectar: the flowering seasons of Australian plants provide a series of different nectar sources at different times of the year (Ford 1977; 1979; Paton 1979; 1986a); and there is no specificity of nectarivore species to plant species (Paton and Ford 1977; Collins and Briffa 1982). Any fluctuations in nectar availability are therefore likely to cause nectarivores to compete for resources during times of shortage. Alternative sources of renewable carbohydrate (Section 1.5.3.2) are likely to be used by nectarivore communities in similar ways to nectar resources (Paton 1980). A further piece of evidence suggesting the importance of competition in honeyeaters are the consistently male skewed sex ratios recorded by studies on honeyeaters (Paton 1979; Pyke et al. 1989; Foster 2001). Male honeyeaters are usually larger than female honeyeaters (Collins and Paton 1989; Paton and Collins 1989), and have been implicated in aggressively excluding females from the best resources, thus forcing them to both move further and forage from inferior resources leading to increased mortality (Paton 1979). Studies of nectarivore communities suggest a number of ways through which competition drives community organisation: size (Ford and Paton 1977; Ford 1979; Paton 1979; Wykes 1985; McFarland 1986a; Collins and McNee 1991), beak length (Ford 1977; Ford and Paton 1977; Paton 1986a; Paton and Collins 1989), habitat (Ford and Paton 1976b; Ford 1977; Recher 1977; Ford 1979; Loyn 1985; Wykes 1985) and behaviour, which includes a mix of social and feeding strategies. The best documented of behavioural strategies is the dominance of an area by Manorina (miners) through group territorial defence (Dow 1977; Loyn et al. 1983; Poiani et al. 1990; Pearce et al. 1995; Grey et al. 1997; Clarke and Schedvin 1999) but also includes concepts that have received only passing comments in the literature (e.g. 'prostitution', Wolf 1975; Paton 1979). Two behaviours, termed here swamping and stealth, have been reported by a number of authors. Stealth behaviour is the use of secretive behavioural techniques to access resources that are being protected (Lyon 1976; Paton 1979; McFarland 1996). Flocking behaviour, or swamping, is the use of a combined direct approach by a number of individuals to access resources that are being protected (Paton 1979; 1980; McFarland 1986a; Slater 1994; Timewell 1997). 2 Ford (1979) suggested size as the most important niche axis dividing honeyeater communities; the largest species aggressively exclude the smaller species from the best resources. Size has been criticised as a niche axis on the basis that it really includes a variety of actual niche axes such as resource harvesting efficiencies, metabolic rates and home range size (Gordon 2000). However, in the case of nectarivores it appears justified, as it plays a direct role in giving the largest species access to the best resources. Large honeyeaters require access to the best available nectar resources to meet their energy requirements and due to their size are able to aggressively dominate those resources (interference competition). The smaller honeyeaters, will gladly also use the best nectar supplies if they can access them (shared preference for resources) but are often compelled to use inferior nectar resources due to the aggression of larger honeyeaters. Smaller honeyeaters are able to use inferior nectar supplies as their overall energy requirements are less (Ford 1979). Collins and McNee (1981) supported this hypothesis, finding the largest honeyeaters relied on the most productive plants, while the smaller honeyeaters were forced to use less rewarding plants, as did Paton (1979). McFarland (1986a) provided further support, finding that a spatial gradient in nectar richness enabled several species to coexist. The largest species dominated the richest areas and the smaller species exploited the poorer areas. However, temporal variation was also found to be important, with most species, ‘unhindered in terms of where, and on what resources, they can forage’ during times of either very low or very high nectar resources (McFarland 1986a). Nectar resources are also divided amongst honeyeaters based on beak length. The long- beaked species take nectar from the flowers of all plant species, while the short-beaked honeyeaters may have trouble reaching the nectar from tubular or gullet-shaped flowers (e.g. Astroloma or Epacris) and are therefore primarily limited to open flowers (e.g. Eucalyptus) (Ford and Paton 1977; Paton 1986a). Dow (1977) documented indiscriminate interspecific aggression of dense colonies of a species of Manorina (miners) leading to its domination of an area. Studies have since shown that the removal of Manorina colonies results in an influx of other honeyeaters and insectivorous birds (Loyn et al. 1983; Pearce et al. 1995; Grey et al. 1997; Clarke and Schedvin 1999). A long term study (7 years) at one site in south-eastern Australia showed a decrease in honeyeater populations corresponding to an increase in a 3 Manorina melanophrys (Bell Miner) population (Poiani et al. 1990). Similar studies have not been published with other suspected aggressive species, such as Anthochaera spp. (Wattlebirds), Philemon spp. (Friarbirds) (Higgins et al. 2001) or New Holland Honeyeaters (Phylidonyris novaehollandiae). However, one study did demonstrate an increase in small honeyeater species after a decrease in abundance of the dominant Anthochaera chrysoptera (Little Wattlebird) from a site following removal of nectar sources (Pyke 1989). There is also some evidence that removal of P. novaehollandiae from an area that they previously dominated (in which flowers were grown commercially) resulted in an influx of other smaller honeyeaters (D. Paton, unpublished data.). Besides the arguments against community organisation being competitively structured, outlined in the first paragraph, there is also an argument that on the Australian mainland, the scale at which many birds move and the heterogeneity of the landscape preclude the conditions necessary for competitive interactions to develop patterns of community organisation (Mac Nally 1995). Mac Nally (1995, pg. 378) suggests that, ‘Local diversity at any time appears to be determined by a complex relation between the available regional pool of species potentially able to occupy a location, idiosyncratic habitat requirements and large-scale dynamics of individual species, resource irruptions and habitat architectures.’ This complex relation supposedly leads to a situation in which, ‘it is not surprising that similar species should frequently co-occur. To the contrary, it would be surprising were ecological differentiation to emerge from small- scale competitive interactions (1995, pg. 378).’ Mac Nally (2000) provides data outlining a situation in which three similar species (insectivorous birds) co-occur in relatively high densities without substantial differences in foraging, providing one example of how
Recommended publications
  • Morphology and Adaptation of Immature Stages of Hemipteran Insects
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Miranda, João M. D.; Brito, João E. C.; Bernardi, Itiberê P.; Passos, Fernando C. BAT ASSEMBLAGE OF THE MARUMBI PEAK STATE PARK, BRAZILIAN ATLANTIC RAINFOREST Mastozoología Neotropical, vol. 25, no. 2, 2018, July-December, pp. 379-390 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45760865010 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 25(2):379-390, Mendoza, 2018 Copyright ©SAREM, 2018 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.18.25.2.0.24 http://www.sbmz.com.br Artículo BAT ASSEMBLAGE OF THE MARUMBI PEAK STATE PARK, BRAZILIAN ATLANTIC RAINFOREST João M. D. Miranda1, 2, João E. C. Brito3, Itiberê P. Bernardi1, 4 and Fernando C. Passos1, 5 1 Laboratório de Biodiversidade, Conservação e Ecologia de Animais Silvestres, Federal University of Paraná, Curitiba, Paraná, Brazil. 2 Biology Department, Midwest Paraná State University, Guarapuava, Paraná, Brazil. [Correspondence: João M. D. Miranda < [email protected]>] 3 Prominer Projetos Ltda., Brazil. 4 Laboratório de Ecologia e Conservação, Pontifical Catholic University of Parana, Curitiba, Paraná, Brazil. 5 Zoology Department, Federal University of Paraná. Curitiba, Paraná, Brasil. ABSTRACT. The great biological diversity found in tropical forests has intrigued scientists for a long time.
    [Show full text]
  • Asian Citrus Psyllid, Diaphorina Citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F
    EENY-033 Asian Citrus Psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F. W. Mead and T. R. Fasulo2 Introduction In June 1998, the insect was detected on the east coast of Florida, from Broward to St. Lucie counties, and was The Asian citrus psyllid, Diaphorina citri Kuwayama, is apparently limited to dooryard host plantings at the time of widely distributed in southern Asia. It is an important pest its discovery. By September 2000, this pest had spread to 31 of citrus in several countries as it is a vector of a serious Florida counties (Halbert 2001). citrus disease called greening disease or Huanglongbing. This disease is responsible for the destruction of several Diaphorina citri is often referred to as citrus psylla, but this citrus industries in Asia and Africa (Manjunath 2008). is the same common name sometimes applied to Trioza Until recently, the Asian citrus psyllid did not occur in erytreae (Del Guercio), the psyllid pest of citrus in Africa. North America or Hawaii, but was reported in Brazil, by To avoid confusion, T. erytreae should be referred to as the Costa Lima (1942) and Catling (1970). African citrus psyllid or the two-spotted citrus psyllid (the latter name is in reference to a pair of spots on the base of the abdomen in late stage nymphs). These two psyllids are the only known vectors of the etiologic agent of citrus greening disease (Huanglongbing), and are the only eco- nomically important psyllid species on citrus in the world. Six other species of Diaphorina are reported on citrus, but these are non-vector species of relatively little importance (Halbert and Manjunath 2004).
    [Show full text]
  • Common Birds in Tilligerry Habitat
    Common Birds in Tilligerry Habitat Dedicated bird enthusiasts have kindly contributed to this sequence of 106 bird species spotted in the habitat over the last few years Kookaburra Red-browed Finch Black-faced Cuckoo- shrike Magpie-lark Tawny Frogmouth Noisy Miner Spotted Dove [1] Crested Pigeon Australian Raven Olive-backed Oriole Whistling Kite Grey Butcherbird Pied Butcherbird Australian Magpie Noisy Friarbird Galah Long-billed Corella Eastern Rosella Yellow-tailed black Rainbow Lorikeet Scaly-breasted Lorikeet Cockatoo Tawny Frogmouth c Noeline Karlson [1] ( ) Common Birds in Tilligerry Habitat Variegated Fairy- Yellow Faced Superb Fairy-wren White Cheeked Scarlet Honeyeater Blue-faced Honeyeater wren Honeyeater Honeyeater White-throated Brown Gerygone Brown Thornbill Yellow Thornbill Eastern Yellow Robin Silvereye Gerygone White-browed Eastern Spinebill [2] Spotted Pardalote Grey Fantail Little Wattlebird Red Wattlebird Scrubwren Willie Wagtail Eastern Whipbird Welcome Swallow Leaden Flycatcher Golden Whistler Rufous Whistler Eastern Spinebill c Noeline Karlson [2] ( ) Common Sea and shore birds Silver Gull White-necked Heron Little Black Australian White Ibis Masked Lapwing Crested Tern Cormorant Little Pied Cormorant White-bellied Sea-Eagle [3] Pelican White-faced Heron Uncommon Sea and shore birds Caspian Tern Pied Cormorant White-necked Heron Great Egret Little Egret Great Cormorant Striated Heron Intermediate Egret [3] White-bellied Sea-Eagle (c) Noeline Karlson Uncommon Birds in Tilligerry Habitat Grey Goshawk Australian Hobby
    [Show full text]
  • Fire Management Newsletter: Eucalyptus: a Complex Challenge
    Golden Gate National Recreation Area National Park Service U.S. Department of the Interior Point Reyes National Seashore EucalyptusEucalyptus A Complex Challenge AUSTRALIA FIRE MANAGEMENT, RESOURCE PROTECTION, AND THE LEGACY OF TASMANIAN BLUE GUM DURING THE AGE OF EXPLORATION, CURIOUS SPECIES dead, dry, oily leaves and debris—that is especially flammable. from around the world captured the imagination, desire and Carried by long swaying branches, fire spreads quickly in enterprising spirit of many different people. With fragrant oil and eucalyptus groves. When there is sufficient dead material in the massive grandeur, eucalyptus trees were imported in great canopy, fire moves easily through the tree tops. numbers from Australia to the Americas, and California became home to many of them. Adaptations to fire include heat-resistant seed capsules which protect the seed for a critical short period when fire reaches the CALIFORNIA Eucalyptus globulus, or Tasmanian blue gum, was first introduced crowns. One study showed that seeds were protected from lethal to the San Francisco Bay Area in 1853 as an ornamental tree. heat penetration for about 4 minutes when capsules were Soon after, it was widely planted for timber production when exposed to 826o F. Following all types of fire, an accelerated seed domestic lumber sources were being depleted. Eucalyptus shed occurs, even when the crowns are only subjected to intense offered hope to the “Hardwood Famine”, which the Bay Area heat without igniting. By reseeding when the litter is burned off, was keenly aware of, after rebuilding from the 1906 earthquake. blue gum eucalyptus like many other species takes advantage of the freshly uncovered soil that is available after a fire.
    [Show full text]
  • THE HONEYEATERS of KANGAROO ISLAND HUGH FOB,D Accepted August
    134 SOUTH AUsTRALIAN ORNITHOLOGIST, 21 THE HONEYEATERS OF KANGAROO ISLAND HUGH FOB,D Accepted August. 1976 Kangaroo Island is the third largest of Aus­ In the present paper I discuss morphological tralia's islands (4,500 sq. km) and has been and ecological differences between populations separated from the neighbouring Fleurieu of several species of honeyeaters from Kangaroo Peninsula for 10,000 years (Abbott 1973). A Island and the Fleurieu Peninsula respectively, mere 14 km separates island from mainland; and speculate on how these differences origin­ but the island has a distinct avifauna and lacks ated. many of the mainland species. This paucity of DIFFERENCES IN PLUMAGE species has been attributed to extinction after The Kangaroo Island population of Purple­ isolation and failure to recolonise (Abbott gaped Honeyeater was described as larger and 1974, 1976), and to lack of suitable habitat brighter than the mainland population by (Ford and Paton 1975). Mathews (1923-4). Brightness of plumage is a Nine species of honeyeaters are resident on very subjective characteristic, and in my opinion Kangaroo Island. The Purple-gaped Honey­ Purple-gaped Honeyeaters on Kangaroo Island eater Lichenostomus cratitius (formerly Meli­ are, if anything, duller than mainland ones. phaga cratitia) was described as a distinct sub­ Condon (1951) says that the gape of this species by Mathews (1923-24); and Keast species is invariably yellow on Kangaroo Island (1961) mentions that six other species differ in instead of lilac, although he later comments a minor way from mainland populations and that lilac-gaped individuals do occur on the may merit subspecific status.
    [Show full text]
  • Intraspecific Variation in the Acoustic Signals of Birds and One Species
    lntraspecific Variation in the Acoustic Signals of Birds and One Species of Frog: lmplications for the Acoustic ldentification of lndividuals A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy from the University of Adelaide Daniel Rogers BSc (Hons) lll Acknowledgments A great many people have assisted me along the way to completing this work. I would firstly like to thank my family, and especially my mother and father, for instilling in me the notion that if I was passionate enough, I could achieve anything. The fact that my passion lies in the realm of biological conservation must also be attributed to them, by showing me the wonders of the natural world from a very early age. Thanks, Mum and Dad. I would also like to thank Dr. David Paton, for his enthusiastic supervision of this project. I was approached by David with the idea of doing a PhD on acoustic identification of individual birds. Despite neither of us having any background in bioacoustics, Dave's enthusiasm for the idea has allowed my knowledge in the field to flourish, and helped me to maintain my own enthusiasm for the project. As I was also a true omithological novice at the beginning of this work, David also introduced me to the absolute wonders and spectacle of natural history in South Australia, and it is for this that I am certainly most grateful. 'When you take on David Paton as a supervisor, you also get the lab, and all its members have assisted me in one way or another.
    [Show full text]
  • National Parks and Wildlife Act 1972.PDF
    Version: 1.7.2015 South Australia National Parks and Wildlife Act 1972 An Act to provide for the establishment and management of reserves for public benefit and enjoyment; to provide for the conservation of wildlife in a natural environment; and for other purposes. Contents Part 1—Preliminary 1 Short title 5 Interpretation Part 2—Administration Division 1—General administrative powers 6 Constitution of Minister as a corporation sole 9 Power of acquisition 10 Research and investigations 11 Wildlife Conservation Fund 12 Delegation 13 Information to be included in annual report 14 Minister not to administer this Act Division 2—The Parks and Wilderness Council 15 Establishment and membership of Council 16 Terms and conditions of membership 17 Remuneration 18 Vacancies or defects in appointment of members 19 Direction and control of Minister 19A Proceedings of Council 19B Conflict of interest under Public Sector (Honesty and Accountability) Act 19C Functions of Council 19D Annual report Division 3—Appointment and powers of wardens 20 Appointment of wardens 21 Assistance to warden 22 Powers of wardens 23 Forfeiture 24 Hindering of wardens etc 24A Offences by wardens etc 25 Power of arrest 26 False representation [3.7.2015] This version is not published under the Legislation Revision and Publication Act 2002 1 National Parks and Wildlife Act 1972—1.7.2015 Contents Part 3—Reserves and sanctuaries Division 1—National parks 27 Constitution of national parks by statute 28 Constitution of national parks by proclamation 28A Certain co-managed national
    [Show full text]
  • Growing a Wild NYC: a K-5 Urban Pollinator Curriculum Was Made Possible Through the Generous Support of Our Funders
    A K-5 URBAN POLLINATOR CURRICULUM Growing a Wild NYC LESSON 1: HABITAT HUNT The National Wildlife Federation Uniting all Americans to ensure wildlife thrive in a rapidly changing world Through educational programs focused on conservation and environmental knowledge, the National Wildlife Federation provides ways to create a lasting base of environmental literacy, stewardship, and problem-solving skills for today’s youth. Growing a Wild NYC: A K-5 Urban Pollinator Curriculum was made possible through the generous support of our funders: The Seth Sprague Educational and Charitable Foundation is a private foundation that supports the arts, housing, basic needs, the environment, and education including professional development and school-day enrichment programs operating in public schools. The Office of the New York State Attorney General and the New York State Department of Environmental Conservation through the Greenpoint Community Environmental Fund. Written by Nina Salzman. Edited by Sarah Ward and Emily Fano. Designed by Leslie Kameny, Kameny Design. © 2020 National Wildlife Federation. Permission granted for non-commercial educational uses only. All rights reserved. September - January Lesson 1: Habitat Hunt Page 8 Lesson 2: What is a Pollinator? Page 20 Lesson 3: What is Pollination? Page 30 Lesson 4: Why Pollinators? Page 39 Lesson 5: Bee Survey Page 45 Lesson 6: Monarch Life Cycle Page 55 Lesson 7: Plants for Pollinators Page 67 Lesson 8: Flower to Seed Page 76 Lesson 9: Winter Survival Page 85 Lesson 10: Bee Homes Page 97 February
    [Show full text]
  • Effects of Lethal Bronzing Disease, Palm Height, and Temperature On
    insects Article Effects of Lethal Bronzing Disease, Palm Height, and Temperature on Abundance and Monitoring of Haplaxius crudus De-Fen Mou 1,* , Chih-Chung Lee 2, Philip G. Hahn 3, Noemi Soto 1, Alessandra R. Humphries 1, Ericka E. Helmick 1 and Brian W. Bahder 1 1 Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; sn21377@ufl.edu (N.S.); ahumphries@ufl.edu (A.R.H.); ehelmick@ufl.edu (E.E.H.); bbahder@ufl.edu (B.W.B.) 2 School of Biological Sciences, University of Nebraska-Lincoln, 412 Manter Hall, Lincoln, NE 68588, USA; [email protected] 3 Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32608, USA; hahnp@ufl.edu * Correspondence: defenmou@ufl.edu; Tel.: +1-954-577-6352 Received: 5 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Simple Summary: Phytopathogen-induced changes often affect insect vector feeding behavior and potentially pathogen transmission. The impacts of pathogen-induced plant traits on vector preference are well studied in pathosystems but not in phytoplasma pathosystems. Therefore, the study of phytoplasma pathosystems may provide important insight into controlling economically important phytoplasma related diseases. In this study, we aimed to understand the impacts of a phytoplasma disease in palms on the feeding preference of its potential vector. We investigated the effects of a palm-infecting phytoplasma, lethal bronzing (LB), on the abundance of herbivorous insects. These results showed that the potential vector, Haplaxius crudus, is more abundant on LB-infected than on healthy palms.
    [Show full text]
  • Diversity and Abundance of Insect Herbivores Foraging on Seedlings in a Rainforest in Guyana
    R Ecological Entomology (1999) 24, 245±259 Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana YVES BASSET CABI Bioscience: Environment, Ascot, U.K. Abstract. 1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing ®ve species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host speci®city was assessed by calculating Lloyd's index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen±Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of ¯ushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests.
    [Show full text]
  • The Birder, No. 255, Spring 2020
    e h T The oBfficial mIagaRzine of BDirds SA SEpring 202R 0 No 255 In this Issue Vale Kent Treloar October Campout Linking people with birds What’s happening to in South Australia Adelaide’s trees? A Colourful Pair A Rainbow Lorikeet pair (Photographed by Jeff Groves on River Torrens Linear Park ,June 2020 ) Contents President’s Message ............................................................................................................ 5 Volunteers wanted ................................................................................................................. 6 Vale Kent Treloar ..................................................................................................................... 7 Conservation Sub-Committee Report ............................................................................... 10 What’s happening to Adelaide’s Trees? ............................................................................. 12 Friends of Adelaide International Bird Sanctuary (FAIBS) ............................................. 16 Your help is still needed ...................................................................................................... 17 Bird Watching is Big Business ............................................................................................ 19 Short-tailed Shearwaters in Trouble ................................................................................. 20 Larry’s Birding Trips .............................................................................................................
    [Show full text]