Continuum Limit of Scalar Masses and Mixing Energies

Total Page:16

File Type:pdf, Size:1020Kb

Continuum Limit of Scalar Masses and Mixing Energies 1 Continuum Limit of Scalar Masses and Mixing Energies W. Lee ∗ and D. Weingarten IBM Research, P.O. Box 218, Yorktown Heights, NY 10598, USA We evaluate the continuum limit of the valence approximation to the mass of scalar quarkonium and to the scalar quarkonium-glueball mixing energy for a range of different quark masses. Our results answer several questions raised by the proposed identification of f0(1710) as composed primarily of the lightest scalar glueball. Evidence that f0(1710) is composed mainly of glueball and half quarkonium. the lightest scalar glueball is now given by a cal- For a fixed lattice period L of about 1.6 fm and culation [1], on a 163 24 lattice at β of 5.70, several different values of quark mass, we have yielding 108(29) MeV as× the width for the light- now found the valence approximation to the con- est scalar glueball to decay to all possible pseu- tinuum limit of the mass of the lightest qq states doscalar pairs, and by three independent calcu- and of the mixing energy between these states and lations [2,3] with a combined prediction [4] of the lightest scalar glueball. Continuum predic- 1632(49) MeV as the infinite volume, continuum tions are extrapolated from calculations at four limit of the lightest scalar glueball mass. All four different lattice spacings. For the two largest lat- calculations were done in the valence (quenched) tice spacings we have results also for lattice period approximation. The decay width result combined 2.3 fm. Earlier stages of this work are reported with any reasonable guesses for the effect of finite in Refs. [6,5,9]. lattice spacing, finite lattice volume, and the re- Our results provide answers to the questions maining width to multibody states yields a total raised by the identification of f0(1710) as com- width small enough for the lightest scalar glue- posed largely of the lightest scalar glueball. With ball to be seen easily in experiment. The mass L of 1.6 fm, the valence approximation to the con- prediction combined with the expectation [5] that tinuum limit of the mass of the lightest ss scalar the valence approximation will underestimate the we find is significantly below the valence approxi- scalar glueball mass then points to f0(1710) as mation to the infinite volume, continuum limit of composed primarily of the lightest scalar glue- the scalar glueball mass. Our calculations with L ball [1]. of 2.3 fm show that as the infinite volume limit Among established resonances the only plausi- is taken, the mass of the lightest ss scalar will arXiv:hep-lat/9811005v2 2 Dec 1998 ble alternative to f0(1710) is f0(1500). Refs. [1,6] fall still further. Thus it appears to us that the propose that f0(1500) consists mainly of ss scalar identification of f0(1500) as mainly glueball with quarkonium. A problem with this suggestion, f0(1710) as mainly ss is quite improbable. Our however, is that f0(1500) apparently does not de- values for mixing energy combined with the sim- cay mainly into states containing an s and an s plification of considering mixing only among the quark [7]. Ref. [8] thus interprets f0(1500) as the lightest discrete isosinglet scalar states, then sup- lightest scalar glueball and f0(1710) as ss scalar port a set of physical mixed states with f0(1710) quarkonium. A further problem for any of these composed of 73.8(9.5)% glueball and f0(1500) identifications of f0(1500) and f0(1710) is that consisting of 98.4(1.4)% quarkonium, mainly ss. the Hamiltonian of full QCD couples quarkonium The glueball amplitude which leaks from f0(1710) and glueballs so that physical states should be goes almost entirely to the state f0(1390), which linear combinations of both. In the extreme, mix- remains mainly nn, normal-antinormal, the ab- ing could lead to f0(1710) and f0(1500) each half breviation we adopt for (uu + dd)/√2. In ad- dition, f0(1500) acquires an nn amplitude with ∗present address: T-8, LANL, Los Alamos, NM 87545 2 1.4 ) 8.0 s 1.2 )/E(m f (1710) n L~2.3 fm 7.0 0 E(m L~1.6 fm 1.0 MS (0) 2.0 f0(1500) Λ L~2.3 fm m/ 6.0 MS glueball L~1.6 fm (0) ss, L ∼ 1.6 fm Λ 1.0 )/ ss, L ∼ 2.3 fm s 5.0 0.0 0.1 0.2 E(m 0.0 (0) 0.0 0.1 0.2 Λ a (0) MS Λ a Figure 1. Continuum limit of the scalar ss mass, MS Figure 2. Continuum limit of the mixing energy the scalar glueball mass, and one sigma upper and E(m ) and of the ratio E(m )/E(m ). lower bounds on observed masses. s n s sign opposite to its ss component. Interference mass, scalar glueball mass and quarkonium- glueball mixing energy E. These calculations between the nn and ss components of f0(1500) suppresses the state’s decay to KK final states were done for a range of quark masses starting by a factor consistent, within uncertainties, with a bit below the strange quark mass and running the experimentally observed suppression. to a bit above twice the strange quark mass. An alternative calculation of mixing between For L near 1.6 fm, Figure 1 shows the ss scalar mass in units of Λ(0) as a function of lattice spac- valence approximation quarkonium and glueball MS states is given in Ref. [10]. We show in Ref. [11], ing in units of 1/Λ(0) . A linear extrapolation of MS however, that the calculation of Ref. [10] is not the mass to zero lattice spacing gives 1322(42) correct. MeV, far below our valence approximation infi- Our calculations, using Wilson fermions and nite volume continuum glueball mass of 1632(49) the plaquette action, were done with ensembles of MeV. Figure 1 shows also values of the ss scalar 2 2749 configurations on a lattice 12 10 24 with mass at β of 5.70 and 5.93 with L of 2.24(7) and ×3 × β of 5.70, 1972 configurations on 16 24 with β 2.31(6) fm, respectively. The ss mass with L near 2 × of 5.70, 2328 configurations on 16 14 20 with 2.3 fm lies below the 1.6 fm result for both values ×4 × β of 5.93, 1733 configurations on 24 at β of 5.93, of lattice spacing. Thus the infinite volume con- 2 1000 configurations on 24 20 32 with β of tinuum ss mass should lie below 1322(42) MeV. 6.17, and 1003 configurations× on× 322 28 40 × × For comparison with our data, Figure 1 shows the with β of 6.40. The smaller lattices with β of valence approximation value for the infinite vol- 5.70 and 5.93 and the lattices with β of 6.17 ume continuum limit of the scalar glueball mass and 6.40 have periods in the two (or three) equal and the observed value of the mass of f0(1500) space directions of 1.68(5) fm, 1.54(4) fm, 1.74(5) and of the mass of f0(1710). fm, 1.66(5) fm, respectively, permitting extrapo- Figure 2 shows a linear extrapolation to zero lations to zero lattice spacing with nearly con- lattice spacing of quarkonium-glueball mixing en- stant physical volume. Conversions from lattice ergy at the strange quark mass E(ms). The ex- to physical units in this paper are made [2,4] us- trapolation uses the points with L near 1.6 fm. ing the exact solution to the two-loop zero-flavor The points with larger lattice period suggest that Callan-Symanzik equation for Λ(0) a with Λ(0) of MS MS E(ms) rises a bit with lattice volume, but the 234.9(6.2) MeV [12]. trend is not statistically significant. As a func- From each ensemble of configurations, we eval- tion of quark mass with lattice spacing fixed, we uated, following Ref. [2,6,9], the lightest pseu- found the mixing energy to be extremely close to doscalar quarkonium mass, scalar quarkonium linear. We were thereby able to extrapolate our 3 data reliably down to the normal quark mass mn. lence approximation value 1322(42) MeV for lat- Figure 2 shows also a linear extrapolation to zero tice period 1.6 fm. This 13% gap is comparable lattice spacing of the ratio E(mn)/E(ms). The fit to the largest disagreement, about 10%, found is to the set of points with L near 1.6 fm but is also between the valence approximation and experi- consistent with the points for larger L. Thus the mental values for the masses of light hadrons. In continuum limit we obtain for E(mn)/E(ms) is addition, the physical mixed f0(1710) has a glue- also the infinite volume limit. The limiting value ball content of 73.8(9.5)%, the mixed f0(1500) of E(ms) is 43(31) MeV and of E(mn)/E(ms) is has a glueball content of 1.6(1.4)% and the mixed 1.198(72). f0(1390) has a glueball content of 24.5(10.7)%. The infinite volume continuum value for These predictions are supported by a recent re- E(mn)/E(ms) we now take as an input to a sim- analysis of Mark III data [13] for J/Ψ radiative plified treatment [5] of the mixing among valence decays.
Recommended publications
  • Effective Field Theories for Quarkonium
    Effective Field Theories for Quarkonium recent progress Antonio Vairo Technische Universitat¨ Munchen¨ Outline 1. Scales and EFTs for quarkonium at zero and finite temperature 2.1 Static energy at zero temperature 2.2 Charmonium radiative transitions 2.3 Bottomoniun thermal width 3. Conclusions Scales and EFTs Scales Quarkonia, i.e. heavy quark-antiquark bound states, are systems characterized by hierarchies of energy scales. These hierarchies allow systematic studies. They follow from the quark mass M being the largest scale in the system: • M ≫ p • M ≫ ΛQCD • M ≫ T ≫ other thermal scales The non-relativistic expansion • M ≫ p implies that quarkonia are non-relativistic and characterized by the hierarchy of scales typical of a non-relativistic bound state: M ≫ p ∼ 1/r ∼ Mv ≫ E ∼ Mv2 The hierarchy of non-relativistic scales makes the very difference of quarkonia with heavy-light mesons, which are just characterized by the two scales M and ΛQCD. Systematic expansions in the small heavy-quark velocity v may be implemented at the Lagrangian level by constructing suitable effective field theories (EFTs). ◦ Brambilla Pineda Soto Vairo RMP 77 (2004) 1423 Non-relativistic Effective Field Theories LONG−RANGE SHORT−RANGE Caswell Lepage PLB 167(86)437 QUARKONIUM QUARKONIUM / QED ◦ ◦ Lepage Thacker NP PS 4(88)199 QCD/QED ◦ Bodwin et al PRD 51(95)1125, ... M perturbative matching perturbative matching ◦ Pineda Soto PLB 420(98)391 µ ◦ Pineda Soto NP PS 64(98)428 ◦ Brambilla et al PRD 60(99)091502 Mv NRQCD/NRQED ◦ Brambilla et al NPB 566(00)275 ◦ Kniehl et al NPB 563(99)200 µ ◦ Luke Manohar PRD 55(97)4129 ◦ Luke Savage PRD 57(98)413 2 non−perturbative perturbative matching Mv matching ◦ Grinstein Rothstein PRD 57(98)78 ◦ Labelle PRD 58(98)093013 ◦ Griesshammer NPB 579(00)313 pNRQCD/pNRQED ◦ Luke et al PRD 61(00)074025 ◦ Hoang Stewart PRD 67(03)114020, ..
    [Show full text]
  • Quarkonium Interactions in QCD1
    CERN-TH/95-342 BI-TP 95/41 Quarkonium Interactions in QCD1 D. KHARZEEV Theory Division, CERN, CH-1211 Geneva, Switzerland and Fakult¨at f¨ur Physik, Universit¨at Bielefeld, D-33501 Bielefeld, Germany CONTENTS 1. Introduction 1.1 Preview 1.2 QCD atoms in external fields 2. Operator Product Expansion for Quarkonium Interactions 2.1 General idea 2.2 Wilson coefficients 2.3 Sum rules 2.4 Absorption cross sections 3. Scale Anomaly, Chiral Symmetry and Low-Energy Theorems 3.1 Scale anomaly and quarkonium interactions 3.2 Low energy theorem for quarkonium interactions with pions 3.3 The phase of the scattering amplitude 4. Quarkonium Interactions in Matter 4.1 Nuclear matter 4.2 Hadron gas 4.3 Deconfined matter 5. Conclusions and Outlook 1Presented at the Enrico Fermi International School of Physics on “Selected Topics in Non-Perturbative QCD”, Varenna, Italy, June 1995; to appear in the Proceedings. 1 Introduction 1.1 Preview Heavy quarkonia have proved to be extremely useful for understanding QCD. The large mass of heavy quarks allows a perturbation theory analysis of quarkonium decays [1] (see [2] for a recent review). Perturbation theory also provides a rea- sonable first approximation to the correlation functions of quarkonium currents; deviations from the predictions of perturbation theory can therefore be used to infer an information about the nature of non-perturbative effects. This program was first realized at the end of the seventies [3]; it turned out to be one of the first steps towards a quantitative understanding of the QCD vacuum. The natural next step is to use heavy quarkonia to probe the properties of excited QCD vacuum, which may be produced in relativistic heavy ion collisions; this was proposed a decade ago [4].
    [Show full text]
  • Understanding the J/Psi Production Mechanism at PHENIX Todd Kempel Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Understanding the J/psi Production Mechanism at PHENIX Todd Kempel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Kempel, Todd, "Understanding the J/psi Production Mechanism at PHENIX" (2010). Graduate Theses and Dissertations. 11649. https://lib.dr.iastate.edu/etd/11649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the J= Production Mechanism at PHENIX by Todd Kempel A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Nuclear Physics Program of Study Committee: John G. Lajoie, Major Professor Kevin L De Laplante S¨orenA. Prell J¨orgSchmalian Kirill Tuchin Iowa State University Ames, Iowa 2010 Copyright c Todd Kempel, 2010. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES . v LIST OF FIGURES . vii CHAPTER 1. Overview . 1 CHAPTER 2. Quantum Chromodynamics . 3 2.1 The Standard Model . 3 2.2 Quarks and Gluons . 5 2.3 Asymptotic Freedom and Confinement . 6 CHAPTER 3. The Proton . 8 3.1 Cross-Sections and Luminosities . 8 3.2 Deep-Inelastic Scattering . 10 3.3 Structure Functions and Bjorken Scaling . 12 3.4 Altarelli-Parisi Evolution .
    [Show full text]
  • Strange Hadrocharmonium ∗ M.B
    Physics Letters B 798 (2019) 135022 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Strange hadrocharmonium ∗ M.B. Voloshin a,b,c, a William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA b School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA c Institute of Theoretical and Experimental Physics, Moscow, 117218, Russia a r t i c l e i n f o a b s t r a c t Article history: It has been recently suggested that the charged charmoniumlike resonances Zc (4100) and Zc (4200) Received 23 May 2019 are two states of hadrocharmonium, related by the charm quark spin symmetry in the same way Received in revised form 12 August 2019 as the lowest charmonium states ηc and J/ψ. It is pointed out here that in this picture one might Accepted 16 September 2019 expect existence of their somewhat heavier strange counterparts, Zcs, decaying to ηc K and J/ψ K . Some Available online 11 October 2019 expected properties of such charmoniumlike strange resonances are discussed that set benchmarks for Editor: B. Grinstein their search in the decays of the strange Bs mesons. © 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 3 (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP . Numerous new resonances recently uncovered near the open down to about 4220 MeV), has been recently invoked [11]for de- charm and open bottom thresholds, the so-called XYZ states, ap- scription of the charged charmoniumlike resonances Zc(4100) and parently do not fit in the standard quark-antiquark template and Zc(4200) observed respectively in the decay channels ηcπ [12] 1 contain light constituents in addition to a heavy quark-antiquark and J/ψπ [13].
    [Show full text]
  • Effective Field Theories of Heavy-Quark Mesons
    Effective Field Theories of Heavy-Quark Mesons A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy (PhD) in the faculty of Engineering and Physical Sciences Mohammad Hasan M Alhakami School of Physics and Astronomy 2014 Contents Abstract 10 Declaration 12 Copyright 13 Acknowledgements 14 1 Introduction 16 1.1 Ordinary Mesons......................... 21 1.1.1 Light Mesons....................... 22 1.1.2 Heavy-light Mesons.................... 24 1.1.3 Heavy-Quark Mesons................... 28 1.2 Exotic cc¯ Mesons......................... 31 1.2.1 Experimental and theoretical studies of the X(3872). 34 2 From QCD to Effective Theories 41 2.1 Chiral Symmetry......................... 43 2.1.1 Chiral Symmetry Breaking................ 46 2.1.2 Effective Field Theory.................. 57 2.2 Heavy Quark Spin Symmetry.................. 65 2.2.1 Motivation......................... 65 2.2.2 Heavy Quark Effective Theory.............. 69 3 Heavy Hadron Chiral Perturbation Theory 72 3.1 Self-Energies of Charm Mesons................. 78 3.2 Mass formula for non-strange charm mesons.......... 89 3.2.1 Extracting the coupling constant of even and odd charm meson transitions..................... 92 2 4 HHChPT for Charm and Bottom Mesons 98 4.1 LECs from Charm Meson Spectrum............... 99 4.2 Masses of the charm mesons within HHChPT......... 101 4.3 Linear combinations of the low energy constants........ 106 4.4 Results and Discussion...................... 108 4.5 Prediction for the Spectrum of Odd- and Even-Parity Bottom Mesons............................... 115 5 Short-range interactions between heavy mesons in frame- work of EFT 126 5.1 Uncoupled Channel........................ 127 5.2 Two-body scattering with a narrow resonance........
    [Show full text]
  • Angular Decay Coefficients of J/Psi Mesons at Forward Rapidity from P Plus P Collisions at Square Root =510 Gev
    BNL-113789-2017-JA Angular decay coefficients of J/psi mesons at forward rapidity from p plus p collisions at square root =510 GeV PHENIX Collaboration Submitted to Physical Review D April 13, 2017 Physics Department Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Two-Loop Correction to the Leptonic Decay of Quarkonium
    CERN-TH/97-353 hep-ph/9712302 December 1997 Two-lo op Correction to the Leptonic Decay of Quarkonium M. Beneke and A. Signer Theory Division, CERN, CH-1211 Geneva 23 and V.A. Smirnov Nuclear Physics Institute, Moscow State University, 119889 Moscow, Russia Abstract Applying asymptotic expansions at threshold, we compute the two-lo op QCD cor- + rection to the short-distance co ecient that governs the leptonic decay ! l l of a S -wave quarkonium state and discuss its impact on the relation b etween the quarkonium non-relativistic wave function at the origin and the quarkonium decay constant in full QCD. PACS Nos.: 13.20.Gd, 12.38.Bx Quarkonium decays played an imp ortant role in establishing Quantum Chromo dynamics (QCD) as a weakly interacting theory at short distances. Calculations of heavy quarko- nium decays usually pro ceed under the assumption that the heavy quark-antiquark b ound state is non-relativistic and that the decay amplitude factorizes into the b ound state wave function at the origin and a short-distance quark-antiquark annihilation am- plitude. One can then explain the small width of the S -wave spin-triplet charmonium state J= , b ecause it can decay only through electro-magnetic annihilation or annihila- tion into at least three gluons [1]. Today's understanding of quarkonium b ound states has re ned this picture and allows us to calculate relativistic corrections systematically at the exp ense of intro ducing further non-p erturbative parameters that characterize the b ound state. Such calculations can be done most transparently in the framework of a non-relativistic e ective eld theory (NRQCD) [2,3] that implements the factoriza- tion of contributions to the (partial) decay widths from di erent length scales.
    [Show full text]
  • Heavy P-Wave Quarkonium Production Via Higgs Decays
    PHYSICAL REVIEW D 98, 036014 (2018) Heavy P-wave quarkonium production via Higgs decays † ‡ Qi-Li Liao,1,* Ya Deng,1, Yan Yu, 1, Guang-Chuan Wang,1 and Guo-Ya Xie2 1College of Mobile Telecommunications Chongqing University of Posts and Telecom, Chongqing 401520, People’s Republic of China 2Chongqing University of Posts and Telecom, Chongqing 400065, People’s Republic of China (Received 6 July 2018; published 21 August 2018) The production of the heavy quarkonium, i.e., jðcb¯Þ½ni (or jðbc¯Þ½ni), jðcc¯Þ½ni, and jðbb¯Þ½ni- ¯ 0 0 quarkonium [jðQQ Þ½ni-quarkonium for short], through Higgs H boson semiexclusive decays is evaluated within the nonrelativistic quantum chromodynamics (NRQCD) framework, where [n] stands ¯ 0 1 ¯ 0 3 for the production of the two color-singlet S-wave states, jðQQ Þ½ S01i and jðQQ Þ½ S11i, the production ¯ 0 1 ¯ 0 3 of the four color-singlet P-wave states, i.e., jðQQ Þ½ P01i, jðQQ Þ½ PJ1i (with J ¼½0; 1; 2). Moreover, according to the velocity scaling rule of the NRQCD, the production of the two color-octet components, ¯ 0 1 ¯ 0 3 jðQQ Þg½ S08i and jðQQ Þg½ S18i, are also taken into account. The “improved trace technology” to derive the simplified analytic expressions at the amplitude level is adopted, which shall be useful for dealing with these decay channels. If all higher heavy quarkonium states decay completely to the ground states, 0 ¯ 1 0 1 it should be obtained ΓðH → jðcbÞ½ S01iÞ ¼ 15.14 KeV, ΓðH → jðcc¯Þ½ S01iÞ ¼ 1.547 KeV, and 0 ¯ 1 5 4 ΓðH → jðbbÞ½ S01iÞ ¼ 1.311 KeV.
    [Show full text]
  • Thesis, We Take Σψ Directly from Experimental Data
    QUARKONIUM TRANSPORT THEORY IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS A Dissertation by XIAOJIAN DU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Ralf Rapp Committee Members, Siu Ah Chin Che-Ming Ko Saskia Mioduszewski Frank Sottile Head of Department, Grigory Rogachev August 2019 Major Subject: Physics Copyright 2019 Xiaojian Du ABSTRACT The study of the fundamental strong interaction is an important vehicle for advancing our understanding of nuclear physics. Quarkonia, bound states of heavy quark-antiquark pairs, are promising probes for studying the strong force, in particular its confining prop- erty which constrains quarks and gluons to hadrons. Ultrarelativistic heavy-ion collisions (URHICs) are the only experimental method that can screen the strong force by creating a hot and dense medium. The suppression of quarkonia observed in URHICs is believed to be due to the formation of a deconfined quark-gluon plasma (QGP), a medium with un- bound quarks and gluons. In order to study this phenomenon, we utilize a transport model to describe the evolution of quarkonium states in URHICs. This model calculates the sup- pression of heavy quarkonia, as well as recombination of heavy quark-antiquark pairs, in the medium. For charmonium, in particular, the recombination is essential for describing the momentum and energy dependencies of their spectra. Based on the fact that different binding energies lead to different dissociation temperatures, a “sequential regeneration” of excited and ground-state charmonia is proposed and implemented to compare to experi- mental data in nuclear collisions.
    [Show full text]
  • How to Make Sense of the XYZ Mesons from QCD
    How to Make Sense of the XYZ Mesons from QCD Eric Braaten Ohio State University arXiv:1401.7351, arXiv:1402.0438 (with C. Langmack and D. H. Smith) supported by Department of Energy How to Make Sense of the XYZ Mesons from QCD (using the Born-Oppenheimer Approximation) ● constituent models for XYZ mesons ● Born-Oppenheimer_ approximation for QQ_ hybrid mesons Juge, Kuti, Morningstsar for QQ tetraquark mesons ● hadronic transitions of XYZ mesons XYZ Mesons _ _ ● more than 2 dozen new cc and bb mesons discovered since 2003 ● seem to require additional constituents ● some of them are tetraquark mesons ● many of them are surprisingly narrow ● a major challenge to our understanding of the QCD spectrum! Models for XYZ Mesons three basic categories _ ● conventional quarkonium QQ _ ● Q Q quarkonium hybrid g _ Q q_ ● quarkonium tetraquark q Q Models for XYZ Mesons Quarkonium Tetraquarks _ Q q ● compact tetraquark _ q Q _ _ ● meson molecule Qq qQ _ _ ● diquark-onium Qq qQ q _ ● hadro-quarkonium QQ_ q q _ ● quarkonium adjoint meson QQ_ q Models for XYZ Mesons ● little connection with fundamental theory QCD constituents: degrees of freedom from QCD interactions: purely phenomenological ● some success in describing individual XYZ mesons ● no success in describing pattern of XYZ mesons Models for XYZ Mesons Approaches within QCD fundamental fields: quarks and gluons parameters: αs, quark masses ● Lattice QCD Prelovsek, Leskovec, Mohler, … ● QCD Sum Rules? ● Born-Oppenheimer approximation _ Born-Oppenheimer Approximation for Quarkonium Hybrids ● pioneered
    [Show full text]
  • Pentaquark and Tetraquark States Arxiv:1903.11976V2 [Hep-Ph]
    Pentaquark and Tetraquark states 1 2 3 4;5 6;7;8 Yan-Rui Liu, ∗ Hua-Xing Chen, ∗ Wei Chen, ∗ Xiang Liu, y Shi-Lin Zhu z 1School of Physics, Shandong University, Jinan 250100, China 2School of Physics, Beihang University, Beijing 100191, China 3School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 4School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 5Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China 6School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China 7Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 8Center of High Energy Physics, Peking University, Beijing 100871, China April 2, 2019 Abstract The past seventeen years have witnessed tremendous progress on the experimental and theo- retical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in Ref. [1]. In this article, we shall update the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years. Espe- cially the LHCb collaboration not only confirmed the existence of the hidden-charm pentaquarks but also provided strong evidence of the molecular picture. Besides the well-known XYZ and Pc states, we shall discuss more interesting tetraquark and pentaquark systems either with one, two, three or even four heavy quarks. Some very intriguing states include the fully heavy exotic arXiv:1903.11976v2 [hep-ph] 1 Apr 2019 tetraquark states QQQ¯Q¯ and doubly heavy tetraquark states QQq¯q¯, where Q is a heavy quark.
    [Show full text]
  • G. A. Kozlov on Leptonic Decay of a Heavy Quarkonium with a Higgs-Boson Emission
    ¨¸Ó³ ¢ —Ÿ. 2009. ’. 6, º 1(150). ‘. 37Ä40 ”ˆ‡ˆŠ ‹…Œ…’›• —‘’ˆ– ˆ ’Œƒ Ÿ„. ’…ˆŸ ON LEPTONIC DECAY OF A HEAVY QUARKONIUM WITH A HIGGS-BOSON EMISSION G. A. Kozlov Joint Institute for Nuclear Research, Dubna A leptonic (¯ll) decay of a heavy quarkÄantiquark bound state T (QQ¯ ) with a Higgs-boson H emission is investigated. The applying of the low-energy theorem to mesonÄHiggs coupling allows one to estimate the probability of the decay T (QQ¯ ) → llH¯ . Only a simple version of the Standard Model extension containing two-Higgs doublet is considered. ‚ · ¡μÉ¥ ¨¸¸²¥¤Ê¥É¸Ö ²¥¶Éμ´´Ò° (¯ll) · ¸¶ ¤ ÉÖ¦¥²μ£μ ±¢ ·±- ´É¨±¢ ·±μ¢μ£μ ¸¢Ö§ ´´μ£μ ¸μ¸Éμ- Ö´¨Ö T (QQ¯ ) ¸ Ô³¨¸¸¨¥° ¡μ§μ´ •¨££¸ H. ·¨³¥´¥´¨¥ ´¨§±μÔ´¥·£¥É¨Î¥¸±μ° É¥μ·¥³Ò ± ±μ´¸É ´É¥ ¸¢Ö§¨ ±¢ ·±μ´¨Ö ¸ ̨££¸μ¢¸±¨³ ¡μ§μ´μ³ ¶μ§¢μ²Ö¥É ¢Ò¶μ²´¨ÉÓ μÍ¥´±Ê · ¸¶ ¤ T (QQ¯ ) → llH¯ .‚ ¸É ÉÓ¥ · ¸¸³ É·¨¢ ¥É¸Ö ²¨ÏÓ ¶·μ¸É Ö ¢¥·¸¨Ö · ¸Ï¨·¥´¨Ö ‘É ´¤ ·É´μ° ³μ¤¥²¨, ¸μ¤¥·¦ Ð Ö ¤¢ÊÌ- ̨££¸μ¢¸±¨° ¤Ê¡²¥É. PACS: 11.10.St, 12.60.Fr It is well known that some extensions of the Standard Model (SM) admit the existence of new physical bound states (hadrons), composed of heavy quarks and antiquarks including the 4th generation quarks (Q4) [1]. The question of the existence of 4th generation fermions (f4) is among the most important, intriguing and not solved yet ones in the modern elementary particle physics. We know that, e. g., the heterotic string phenomenology in E6 model leads to the 4th generation of leptons (l4)andQ4 with a relatively stable massive neutrino of 4th generation (ν4) [2].
    [Show full text]