Buckling Analysis of a Column

Total Page:16

File Type:pdf, Size:1020Kb

Buckling Analysis of a Column Buckling Analysis of a Column Title Euler Buckling Analysis of a pin-ended column Description A column with both ends pinned has to be checked for buckling instability i) Find out the buckling mode shapes, ii) Find the critical buckling compressive load on the column Assume Column to be an I-section i.e. a Universal Column UC 203x203x60. The material of the column is S355 as per Eurocode. Height of the column, L= 5 m. Vertical Load acting on the column, P= 1000 kN. Structural geometry and analysis model 1 Finite Element Modelling: Analysis Type: 2-D static analysis (X-Z plane) Step 1: Go to File>New Project and then go to File>Save to save the project with any name Step 2: Go to Model>Structure Type to set the analysis mode to 2D (X-Z plane) Unit System: kN,m Step 3: Go to Tools>Unit System and change the units to kN and m. 2 Geometry generation: Step 4: Go to Model>Structure Wizard>Column and enter Distance as 0.50 m and Repeat times = 10. Press Add. This will create a column of height 5 m which is composed of 10 finite elements. A column should be divided into several finite elements before performing the buckling analysis in the software. Select pin as the boundary condition. Enter Material and Section ID as 1. Click OK. Switch to the Front view by clicking on as shown below. 3 Material: S355 (Eurocode). E=2.1x108 kN/m2 Step 7: Go to Model>Properties>Material>Add. Select Steel in the Type of Design and select Standard as EN(05)S. Select DB as S355. Click OK and Close. Section Property: Section for the column is UC 203x203x60 Step 8: Go to Model>Properties>Section>Add. Select DB/User tab and select I-section type. Enter Section DB as BS04-93. Enter Section types as UC 203x203x60. You can take a note of the section properties i.e. Moment of inertia, Iyy= 6.13x10-5 m4 by clicking on Show Calculation results. Click OK and Close. 4 You can see the column section with the section shape in the model view now. Also take a look at the works tree to see the information related to the model 5 Boundary Condition: Pinned Supports at top and bottom of column. From the Column Wizard in Step 4, we automatically defined a pinned support at the base of the column. Now we will define a pinned support at the top. Step 9: Use select single to select or highlight the topmost node as shown in figure below. Go to Model>Boundaries>Supports and check on Dx and Apply. Load Case: Concentrated Loads: -Vertically downward load of 1000 kN is applied on the top of column applied in (-Z) dir. Step 10: Go to Load>Static Load Cases and define static load case ‘P’. Select Load type as User defined for both of them. Click Close after adding the load case. 6 Step 11: Go to Load>Element Beam Loads and select load case P. Select Load type as Concentrated Force. Select the topmost element using and enter x=1 (marks the end of the element or end of column) and enter Force Value= -1000 kN in the Global Z direction. You can display the values from the Works Tree by Right clicking on Element Beam Loads and click Display. 7 Buckling Analysis: Step 12: Go to Analysis>Buckling Analysis Control. Enter Number modes=5. Check the Consider Axial Forces only box. Select the Load case P for the buckling load case and mark it as variable. Click OK. Step 13: Go to Analysis>Perform Analysis 8 Results Buckling Mode Shapes: Step 14: Click on Results>Buckling Mode Shapes. Select Mode 1,2 and 3 one by one. Check on Undeformed, Legend and Contour and click on Apply to see different mode shapes graphically. You can also view multiple buckling mode shapes at the same time by clicking on Multi Modes option. Critical load factor for Mode 1 is 5.417 which means that the maximum compressive force for buckling is Pcr=1000x5.417=5417 kN. 9 Critical load factor for Mode 2 is 19.69 which means that the maximum compressive force for 2nd mode buckling is Pcr=1000x19.69=19690 kN. 10 Critical load factor for Mode 3 is 38.43 which means that the maximum compressive force for 3rd mode buckling is Pcr=1000x38.43=38430 kN. Multi Modes: 11 Hand Calculations: Euler Critical Buckling Load for Pinned ended columns: 흅ퟐ푬푰 푷 = 풄풓 푳ퟐ For nth buckling mode, Euler Critical Buckling Load: 흅ퟐ푬푰 푷 = 풏ퟐ 풄풓,풏 푳ퟐ The higher level harmonics are only possible if columns are restrained at the appropriate levels, e.g. mid-height point in the case of the 2nd harmonic and the third-height points in the case of the 3rd harmonic. In our case we do not have any intermediate restraints, hence we will focus on the first mode. For 1st mode: 흅ퟐ × ퟐ. ퟏ × ퟏퟎퟖ × ퟔ. ퟏퟑ × ퟏퟎ−ퟓ 푷 = = ퟓퟎퟖퟐ 풌푵 풄풓 ퟓ. ퟎퟐ Comparison of Results Unit : kN,m Mode Number Theoretical Midas Gen Critical Buckling Load 1 5082 5417 More accurate results can be obtained in finite element analysis if the number of elements are increased in the analysis. Generally theoretical formulas give lesser (or conservative) values for critical buckling loads. Hence finite element analysis is very commonly used to check critical buckling. Reference William M.C. McKenzie, “Examples in Structural Analysis”, 1st Edition, Taylor & Francis 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN, 2006, 5.2.1 Example 5.3, Page 383. 12 .
Recommended publications
  • The Effect of Yield Strength on Inelastic Buckling of Reinforcing
    Mechanics and Mechanical Engineering Vol. 14, No. 2 (2010) 247{255 ⃝c Technical University of Lodz The Effect of Yield Strength on Inelastic Buckling of Reinforcing Bars Jacek Korentz Institute of Civil Engineering University of Zielona G´ora Licealna 9, 65{417 Zielona G´ora, Poland Received (13 June 2010) Revised (15 July 2010) Accepted (25 July 2010) The paper presents the results of numerical analyses of inelastic buckling of reinforcing bars of various geometrical parameters, made of steel of various values of yield strength. The results of the calculations demonstrate that the yield strength of the steel the bars are made of influences considerably the equilibrium path of the compressed bars within the range of postyielding deformations Comparative diagrams of structural behaviour (loading paths) of thin{walled sec- tions under investigation for different strain rates are presented. Some conclusions and remarks concerning the strain rate influence are derived. Keywords: Reinforcing bars, inelastic buckling, yield strength, tensil strength 1. Introduction The impact of some exceptional loads, e.g. seismic loads, on a structure may re- sult in the occurrence of post{critical states. Therefore the National Standards regulations for designing reinforced structures on seismically active areas e.g. EC8 [15] require the ductility of a structure to be examined on a cross{sectional level, and additionally, the structures should demonstrate a suitable level of global duc- tility. The results of the examinations of members of reinforced concrete structures show that inelastic buckling of longitudinal reinforcement bars occurs in the state of post{critical deformations, [1, 2, 4, 7], and in some cases it occurs yet within the range of elastic deformations [8].
    [Show full text]
  • Lecture 42: Failure Analysis – Buckling of Columns Joshua Pribe Fall 2019 Lecture Book: Ch
    ME 323 – Mechanics of Materials Lecture 42: Failure analysis – Buckling of columns Joshua Pribe Fall 2019 Lecture Book: Ch. 18 Stability and equilibrium What happens if we are in a state of unstable equilibrium? Stable Neutral Unstable 2 Buckling experiment There is a critical stress at which buckling occurs depending on the material and the geometry How do the material properties and geometric parameters influence the buckling stress? 3 Euler buckling equation Consider static equilibrium of the buckled pinned-pinned column 4 Euler buckling equation We have a differential equation for the deflection with BCs at the pins: d 2v EI+= Pv( x ) 0 v(0)== 0and v ( L ) 0 dx2 The solution is: P P A = 0 v(s x) = Aco x+ Bsin x with EI EI PP Bsin L= 0 L = n , n = 1, 2, 3, ... EI EI 5 Effect of boundary conditions Critical load and critical stress for buckling: EI EA P = 22= cr L2 2 e (Legr ) 2 E cr = 2 (Lreg) I r = Pinned- Pinned- Fixed- where g Fixed- A pinned fixed fixed is the “radius of gyration” free LLe = LLe = 0.7 LLe = 0.5 LLe = 2 6 Modifications to Euler buckling theory Euler buckling equation: works well for slender rods Needs to be modified for smaller “slenderness ratios” (where the critical stress for Euler buckling is at least half the yield strength) 7 Summary L 2 E Critical slenderness ratio: e = r 0.5 gYc Euler buckling (high slenderness ratio): LL 2 E EI If ee : = or P = 2 rr cr 2 cr L2 gg c (Lreg) e Johnson bucklingI (low slenderness ratio): r = 2 g Lr LLeeA ( eg) If : =−1 rr cr2 Y gg c 2 Lr ( eg)c with radius of gyration 8 Summary Effective length from the boundary conditions: Pinned- Pinned- Fixed- LL= LL= 0.7 FixedLL=- 0.5 pinned fixed e fixede e LL= 2 free e 9 Example 18.1 Determine the critical buckling load Pcr of a steel pipe column that has a length of L with a tubular cross section of inner radius ri and thickness t.
    [Show full text]
  • 28 Combined Bending and Compression
    CE 479 Wood Design Lecture Notes JAR Combined Bending and Compression (Sec 7.12 Text and NDS 01 Sec. 3.9) These members are referred to as beam-columns. The basic straight line interaction for bending and axial tension (Eq. 3.9-1, NDS 01) has been modified as shown in Section 3.9.2 of the NDS 01, Eq. (3.9-3) for the case of bending about one or both principal axis and axial compression. This equation is intended to represent the following conditions: • Column Buckling • Lateral Torsional Buckling of Beams • Beam-Column Interaction (P, M). The uniaxial compressive stress, fc = P/A, where A represents the net sectional area as per 3.6.3 28 CE 479 Wood Design Lecture Notes JAR The combination of bending and axial compression is more critical due to the P-∆ effect. The bending produced by the transverse loading causes a deflection ∆. The application of the axial load, P, then results in an additional moment P*∆; this is also know as second order effect because the added bending stress is not calculated directly. Instead, the common practice in design specifications is to include it by increasing (amplification factor) the computed bending stress in the interaction equation. 29 CE 479 Wood Design Lecture Notes JAR The most common case involves axial compression combined with bending about the strong axis of the cross section. In this case, Equation (3.9-3) reduces to: 2 ⎡ fc ⎤ fb1 ⎢ ⎥ + ≤ 1.0 F' ⎡ ⎛ f ⎞⎤ ⎣ c ⎦ F' 1 − ⎜ c ⎟ b1 ⎢ ⎜ F ⎟⎥ ⎣ ⎝ cE 1 ⎠⎦ and, the amplification factor is a number greater than 1.0 given by the expression: ⎛ ⎞ ⎜ ⎟ ⎜ 1 ⎟ Amplification factor for f = b1 ⎜ ⎛ f ⎞⎟ ⎜1 − ⎜ c ⎟⎟ ⎜ ⎜ F ⎟⎟ ⎝ ⎝ E 1 ⎠⎠ 30 CE 479 Wood Design Lecture Notes JAR Example of Application: The general interaction formula reduces to: 2 ⎡ fc ⎤ fb1 ⎢ ⎥ + ≤ 1.0 F' ⎡ ⎛ f ⎞⎤ ⎣ c ⎦ F' 1 − ⎜ c ⎟ b1 ⎢ ⎜ F ⎟⎥ ⎣ ⎝ cE 1 ⎠⎦ where: fc = actual compressive stress = P/A F’c = allowable compressive stress parallel to the grain = Fc*CD*CM*Ct*CF*CP*Ci Note: that F’c includes the CP adjustment factor for stability (Sec.
    [Show full text]
  • “Linear Buckling” Analysis Branch
    Appendix A Eigenvalue Buckling Analysis 16.0 Release Introduction to ANSYS Mechanical 1 © 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this Appendix, performing an eigenvalue buckling analysis in Mechanical will be covered. Mechanical enables you to link the Eigenvalue Buckling analysis to a nonlinear Static Structural analysis that can include all types of nonlinearities. This will not be covered in this section. We will focused on Linear buckling. Contents: A. Background On Buckling B. Buckling Analysis Procedure C. Workshop AppA-1 2 © 2015 ANSYS, Inc. February 27, 2015 A. Background on Buckling Many structures require an evaluation of their structural stability. Thin columns, compression members, and vacuum tanks are all examples of structures where stability considerations are important. At the onset of instability (buckling) a structure will have a very large change in displacement {x} under essentially no change in the load (beyond a small load perturbation). F F Stable Unstable 3 © 2015 ANSYS, Inc. February 27, 2015 … Background on Buckling Eigenvalue or linear buckling analysis predicts the theoretical buckling strength of an ideal linear elastic structure. This method corresponds to the textbook approach of linear elastic buckling analysis. • The eigenvalue buckling solution of a Euler column will match the classical Euler solution. Imperfections and nonlinear behaviors prevent most real world structures from achieving their theoretical elastic buckling strength. Linear buckling generally yields unconservative results
    [Show full text]
  • Buckling Failure Boundary for Cylindrical Tubes in Pure Bending
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2012-03-14 Buckling Failure Boundary for Cylindrical Tubes in Pure Bending Daniel Peter Miller Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Mechanical Engineering Commons BYU ScholarsArchive Citation Miller, Daniel Peter, "Buckling Failure Boundary for Cylindrical Tubes in Pure Bending" (2012). Theses and Dissertations. 3131. https://scholarsarchive.byu.edu/etd/3131 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Buckling Failure Boundary for Cylindrical Tubes in Pure Bending Daniel Peter Miller A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Kenneth L. Chase, Chair Carl D. Sorenson Brian D. Jensen Department of Mechanical Engineering Brigham Young University April 2012 Copyright © 2012 Daniel P. Miller All Rights Reserved ABSTRACT Buckling Failure Boundary for Cylindrical Tubes in Pure Bending Daniel Peter Miller Department of Mechanical Engineering Master of Science Bending of thin-walled tubing to a prescribed bend radius is typically performed by bending it around a mandrel of the desired bend radius, corrected for spring back. By eliminating the mandrel, costly setup time would be reduced, permitting multiple change of radius during a production run, and even intermixing different products on the same line. The principal challenge is to avoid buckling, as the mandrel and shoe are generally shaped to enclose the tube while bending.
    [Show full text]
  • Column Analysis and Design
    Chapter 9: Column Analysis and Design Introduction Columns are usually considered as vertical structural elements, but they can be positioned in any orientation (e.g. diagonal and horizontal compression elements in a truss). Columns are used as major elements in trusses, building frames, and sub-structure supports for bridges (e.g. piers). • Columns support compressive loads from roofs, floors, or bridge decks. • Columns transmit the vertical forces to the foundations and into the subsoil. The work of a column is simpler than the work of a beam. • The loads applied to a column are only axial loads. • Loads on columns are typically applied at the ends of the member, producing axial compressive stresses. • However, on occasion the loads acting on a column can include axial forces, transverse forces, and bending moments (e.g. beam-columns). Columns are defined by the length between support ends. • Short columns (e.g. footing piers). • Long columns (e.g. bridge and freeway piers). Virtually every common construction material is used for column construction. • Steel, timber, concrete (reinforced and pre-stressed), and masonry (brick, block, and stone). The selection of a particular material may be made based on the following. • Strength (material) properties (e.g. steel vs. wood). • Appearance (circular, square, or I-beam). • Accommodate the connection of other members. • Local production capabilities (i.e. the shape of the cross section). Columns are major structural components that significantly affect the building’s overall performance and stability. • Columns are designed with larger safety factors than other structural components. 9.1 • Failure of a joist or beam may be localized and may not severely affect the building’s integrity (e.g.
    [Show full text]
  • Local Buckling Analysis of Steel Truss Bridge Under Seismic Loading
    LOCAL BUCKLING ANALYSIS OF STEEL TRUSS BRIDGE UNDER SEISMIC LOADING Eiki Yamaguchi1, Keita Yamada2 Abstract In the 2004 Mid Niigata Prefecture Earthquake, a steel truss bridge was damaged: the lower chord member underwent local buckling. The axial force in that member is not necessarily compression-dominant: tensile axial force is also expected. Since many steel bridge piers were subjected to local buckling in the 1995 Kobe Earthquake, the criterion for local bucking in the member under axial compression has been studied rather extensively. However, the local buckling in the member under the other states of axial force has not. In the present study, the local buckling in the lower chord member of a truss bridge is to be looked into. To that end, the existing criterion for local buckling in terms of average strain is tested for the case when tensile yielding precedes compression, failing to confirm its applicability. Then the criterion is modified by introducing the updated average strain. The seismic response analysis is then conducted to show the significance of the proposed criterion. Introduction One of the largest earthquakes in the recorded history, the Tohoku Earthquake, just hit Japan in March, 2011, causing very serious damage in the eastern part of Japan. Yet the memory of the damage to structures in the 1995 Kobe Earthquake is still fresh and vivid for many structural engineers. Between the two large earthquakes, numerous earthquakes occurred as well, some of which were quite large and comparable to the 1995 Kobe Earthquake. The damage in each big earthquake has posed a new challenge for engineers; some of them are yet to be solved.
    [Show full text]
  • Impact of Ballast Fouling on the Mechanical Properties of Railway Ballast: Insights from Discrete Element Analysis
    Impact of Ballast Fouling on the Mechanical Properties of Railway Ballast: Insights from Discrete Element Analysis By Luyu Wang Department of Civil Engineering and Applied Mechanics McGill University Montréal, Québec, Canada July 2020 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Master of Engineering © Luyu Wang, 2020 Abstract Ballast fouling is a major factor that contributes to the reduction of the shear strength of railway ballast, which can further influence the stability of railway equipment. Depending on the railway function and location, the major sources of ballast fouling are the infiltration of foreign fine material and ballast material degradation. The discrete element method (DEM) is an efficient way to capture the mechanical behavior of particles under various loading conditions. It has been successfully applied to investigate the mechanical behavior of ballast assembly and fouled ballast in the previous practices. In this study, a discrete element model is developed in PFC3D to simulate the stress-strain behavior of fresh ballast assembly tested in the direct shear test. A series of sensitivity analyses of the different parameters are conducted to better understand the corresponding effect on the stress- strain behavior of ballast assembly. An efficient approach to simulate the foreign material induced fouling of ballast and capture the mechanical behavior of the material at various levels of void contamination index (VCI) is proposed. The approach is based on the concept that the foreign fouling material will not only change the inter-particle friction angle but also the inter-particle contact stiffness. Therefore, both the effective modulus and the inter-particle friction coefficient are adjusted based on the validated fresh ballast contact model.
    [Show full text]
  • Residual Ultimate Buckling Strength of Steel Stiffened Panels Subjected
    RESIDUAL ULTIMATE BUCKLING STRENGTH OF STEEL STIFFENED PANELS SUBJECTED TO CORROSION DAMAGE A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Master of Science Elijah Fox May, 2017 RESIDUAL ULTIMATE BUCKLING STRENGTH OF STEEL STIFFENED PANELS SUBJECTED TO CORROSION DAMAGE Elijah Fox Thesis Approved: Accepted: Advisor Department Chair Dr. Anil Patnaik Dr. Wieslaw K. Binienda Committee Member Interim Dean of the College Dr. Craig Menzemer Dr. Donald J. Visco Committee Member Dean of the Graduate School Dr. Ping Yi Dr. Chand Midha Date 2 ACKNOWLEDGEMENTS I would like to thank my mother, Janice, and my siblings, Kivie and Nakita. Without my families support over all of these years, I would not have been able to complete my degree. My mother has always been strong and has taught me so many fundamentals which I live by; I just want to thank her for making me the man I am today. My family has always been so supportive, loving, and has done anything they could to help me succeed and because of this, I am forever grateful. I owe a special thank you to my amazing life partner, Marisa. She has been in my life since my first day of college and I would not have been able to make it without her love and support throughout these years. She is still by my side through all of the trials and tribulations life has thrown at me over the past seven years and words could not express how appreciative I am of all of her help.
    [Show full text]
  • Fracture, Delamination, and Buckling of Elastic Thin Films on Compliant Substrates
    FRACTURE, DELAMINATION, AND BUCKLING OF ELASTIC THIN FILMS ON COMPLIANT SUBSTRATES Haixia Mei, Yaoyu Pang, Se Hyuk Im, Rui Huang Department of Aerospace Engineering and Engineering Mechanics University of Texas at Austin 1 University Station, C0600 Austin, Texas 78712 Phone: (512) 471-7558 Fax: (512) 471-5500 Email: [email protected] ABSTRACT Greek symbols A series of studies have been conducted for mechanical fracture toughness (J/m2) behavior of elastic thin films on compliant substrates. Under first Dundurs parameter (dimensionless) tension, the film may fracture by growing channel cracks. The second Dundurs parameter (dimensionless) driving force for channel cracking (i.e., the energy release opening displacement (m) rate) increases significantly for compliant substrates. phase angle of mode mix (radian) Moreover, channel cracking may be accompanied by Poisson’s ratio (dimensionless) interfacial delamination. For a film on a relatively compliant 2 substrate, a critical interface toughness is predicted, which stress (N/m ) separates stable and unstable delamination. For a film on a relatively stiff substrate, however, a channel crack grows with Subscripts no delamination when the interface toughness is greater than a f film critical value. An effective energy release rate for the steady- i interface state growth of a channel crack is defined to account for the s substrate influence of interfacial delamination on both the fracture ss steady state driving force and the resistance, which can be significantly higher than the energy release rate assuming no delamination. Alternatively, when the film is under compression, it tends to INTRODUCTION buckle. Two buckling modes have been observed, one with interfacial delamination (i.e., buckle-delamination) and the Integrated structures with mechanically soft components have other without delamination (i.e., wrinkling).
    [Show full text]
  • DNVGL-CG-0128 Buckling
    CLASS GUIDELINE DNVGL-CG-0128 Edition October 2015 Buckling The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. DNV GL AS FOREWORD DNV GL class guidelines contain methods, technical requirements, principles and acceptance criteria related to classed objects as referred to from the rules. © DNV GL AS Any comments may be sent by e-mail to [email protected] If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of DNV GL, then DNV GL shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compensation shall never exceed USD 2 million. In this provision "DNV GL" shall mean DNV GL AS, its direct and indirect owners as well as all its affiliates, subsidiaries, directors, officers, employees, agents and any other acting on behalf of DNV GL. CHANGES – CURRENT This is a new document. Changes - current Class guideline — DNVGL-CG-0128. Edition October 2015 Page 3 Buckling DNV GL AS CONTENTS Changes – current...................................................................................................... 3 Contents Section 1 Introduction............................................................................................... 7 1 Objective.................................................................................................7 2 Buckling methods..................................................................................
    [Show full text]
  • Experiment Four (4) Column Buckling Test
    Experiment Four (4) Column Buckling Test Introduction 4.1 Objective: The purpose of this experiment is to verify the Euler buckling equation for steel columns of various lengths subjected to different end conditions. Apparatus: Materials and Equipment a. Columns of various lengths made from different materials b. Column buckling machine c. Load equipment d. Dial indicators 4.3 Background There are usually two primary concerns when analyzing and designing structures: (1) the ability of the structure to support a specified load without experiencing excessive stress and (2) the ability of the structure to support a given load without undergoing unacceptable deformation. In some cases, however, stability considerations are important especially when the potential exists for the structure to experience a sudden radical change in its configuration. These considerations are typically made when dealing with vertical prismatic members supporting axial loads. Such structures are called columns. A column will buckle when it is subjected to a load greater than the critical load denoted by Pcr. That is, instead of remaining straight, it will suddenly become sharply curved as illustrated in Figure 1. The critical load is given in terms of an effective length by : Dr. S. E. Beladi, PE Mechanics of Materials Lab P a g e | 1 Experiment Four- Bucking of Column where E is the elastic modulus, I is the moment of inertia, and Le is the effective length. The expression in Equation (4.3-1) is known as Euler's formula. The effective length depends upon the constraints imposed on the ends of the column. Figure 2 shows how the effective length is related to the actual length of the column for various end conditions.
    [Show full text]