2010 Chern Medal Awarded

Total Page:16

File Type:pdf, Size:1020Kb

2010 Chern Medal Awarded 2010 Chern Medal Awarded On August 19, 2010, the first and nonlinear partial differential equations (PDEs) Chern Medal Award was pre- and related areas of analysis, the basic mathemati- sented at the opening ceremo- cal tools of modern science. PDEs arise in physics nies of the International Con- and geometry when systems depend on several gress of Mathematicians (ICM) in variables simultaneously, and the most interest- Hyderabad, India. The awardee ing ones are nonlinear. The importance of PDEs is is Louis Nirenberg of the Cou- clear in the fact that, of the seven million-dollar rant Institute of Mathematical Millennium Problems posed by the Clay Mathemat- Sciences, New York University. ics Institute, three are in or are related to PDEs. He was honored “for his role in Nirenberg’s work in PDEs is deep and fundamen- the formulation of the modern Photograph courtesy of ICM/IMU. tal. He developed intricate connections between theory of nonlinear elliptic par- Louis Nirenberg analysis and differential geometry and applied tial differential equations and them to the theory of fluid phenomena and other for mentoring numerous students and postdocs physical processes. in this area.” Nirenberg’s thesis concerned a fundamental The Chern Medal Award was instituted for 2010 issue in geometry: the solution to an embedding in memory of the outstanding mathematician problem in differential geometry that Hermann Shiing-Shen Chern. It will be awarded jointly with Weyl had posed around 1916. Given a Riemannian the Chern Medal Foundation (CMF) to an individual metric on a unit sphere with positive Gauss curva- whose lifelong outstanding achievements in the ture, can you embed this two-sphere isometrically field of mathematics warrant the highest level of in three-space as a convex surface? The thesis itself recognition. was a window to Nirenberg’s main interests—PDEs, Shiing-Shen Chern devoted his life to mathemat- and especially elliptic PDEs. In giving a positive ics, both in active research and education, and answer to Weyl’s question, Nirenberg used ideas to nurturing the field whenever the opportunity due to Charles Morrey. He solved the problem by arose. He obtained fundamental results in all the major aspects of modern geometry and founded reducing it to a problem in nonlinear PDE. This the area of global differential geometry. Chern equation is also an elliptic PDEs. (In elliptic PDEs, exhibited keen aesthetic tastes in his selection of the coefficients satisfy a positivity condition, and problems, and the breadth of his work deepened these have applications in almost all areas of the connections of modern geometry with different mathematics, as well as numerous applications in areas of mathematics. physics. As with a general PDE, an elliptic PDE may The award consists of a medal and a monetary have nonconstant coefficients and be nonlinear. prize of US$500,000. It is required that half of The basic example of an elliptic PDE is Laplace’s the award be donated to organizations of the equation.) recipient’s choice to support research, education, As mathematician J. Mawhin has pointed out in outreach, or other activities to promote mathemat- his recent tribute to Nirenberg, ellipticity is a key ics. Chern was generous during his lifetime in his word in Nirenberg’s mathematical work. More than personal support of the field, and it is hoped that one-third of Nirenberg’s articles contain the word this philanthropy requirement for the promotion “elliptic” in their titles, and a much larger fraction of mathematics will set the stage and the standard of them deal with elliptic equations or systems. for mathematicians to continue this generosity on “There is hardly any aspect of those equations he a personal level. has not considered,” Mawhin said. Despite their Louis Nirenberg is undoubtedly one of the variety, elliptic PDEs have a well-developed theory outstanding analysts of the twentieth century. to which Nirenberg contributed in large measure. His work has had major influence in the develop- In 1953, the first year in which he published, he ment of different areas of mathematics and their published three further papers, two of which applications. In particular, he has been a leader in involved nonlinear elliptic PDEs, to which he re- most of the developments in the theory of linear turned in later years. 1472 NOTICES OF THE AMS VOLUME 57, NUMBER 11 Through the next twenty years, with several As mentioned earlier, Nirenberg, a pioneer in collaborators, he developed the theory of elliptic nonlinear PDEs, has turned his attention again at equations satisfying certain regularity criteria that various stages to fully nonlinear equations and he had formulated. Although proofs for the exis- made striking breakthroughs. An example is the tence and uniqueness of weak solutions to elliptic series of papers on the existence of smooth solu- problems were well known, Nirenberg addressed tions of equations of Monge-Ampère type, which the much more difficult question of how regular are nonlinear second-order PDEs with special (or well behaved) the weak solution is. (A weak symmetries, with Luis Caffarelli and Spruck. Niren- solution to a PDE is one for which the derivatives berg’s study of symmetric solutions of nonlinear appearing in the equation may not all exist but elliptic equations using moving plane methods, which nevertheless is deemed to satisfy the equa- with Basilis Gidas and Wei Ming Ni, and later with tion in a certain dual sense.) Today, Nirenberg’s Henri Berestycki, is an ingenious application of the method of differences for proving the interior and maximum principle. Mawhin has called Nirenberg boundary regularity is part of a graduate student’s a “Paganini of the maximum principle”. Thanks to education in PDEs. Nirenberg’s ideas and methods, this has developed A high point in his research in this area is the into a beautiful theory and has led to applications extension of this work, which was done in collabo- in combustion theory. ration with Shmuel Agmon and Avron Douglis on a The following famous quotations by Nirenberg priori estimates for general linear elliptic systems. are indicative of his approach to handling nonlin- This is one of the most widely quoted results in earity; in Nirenberg's view, the problem determines analysis. As Nirenberg has said, the objective was the method. In his invited lecture at the Stockholm to obtain “general estimates for general systems International Congress of Mathematicians (ICM under general boundary conditions”. The citation 1962), he said: “Most results for nonlinear prob- for the Steele Prize for Lifetime Achievement, lems are still obtained via linear ones, despite the fact that the problems are nonlinear and not which he received from the American Mathematical because of it.” In the same lecture he also said, Society (1994), said: “Nirenberg is a master of the commenting on someone’s result, “The nonlinear art and science of obtaining and applying a priori character of the equation is used in an essential estimates in all fields of analysis.” way; indeed, he obtains results because of the Essential questions about regularity for Navier- nonlinearity and not despite it.” Stokes equations, whose solutions determine fluid Nirenberg’s wide range of interests also includes motion, are still open, and it is one of the Clay differential geometry and topology, in which he Institute’s Millennium Problems. Among the best has made significant contributions. In harmonic results today is the Caffarelli-Kohn-Nirenberg es- analysis a function of bounded mean oscillation timate of the measure of the set of singularities. (BMO) is a real-valued function whose mean os- Nirenberg feels that the problem will be solved cillation is bounded (finite). Motivated by Fritz soon but that it will require more input from har- John’s earlier work in elasticity, Nirenberg, in as- monic analysis. sociation with John, investigated for the first time Building on earlier estimates of Alberto Calde- the topology of the space of such functions and rón and Antoni Zygmund, he and Joseph Kohn gave a precise definition for it. The space is also introduced the concept of a pseudodifferential sometimes called the John-Nirenberg space. The operator, a generalization of the idea of parametrix results were crucial for later work of Charles Fef- for a partial differential operator, which is useful ferman on Hardy spaces. This function space has in addressing the question of regularity of solu- subsequently been used in many parts of analysis tions to elliptic boundary value problems. They and in martingale theory. More recently, motivated were addressing a problem that involved singular by some nonlinear problems in physics, Nirenberg integral operators (integral operators that are returned to this field and, in collaboration with not mathematically defined at a point), and they Haim Brezis, investigated the space of functions needed facts about certain properties of singular with vanishing mean oscillation (VMO). The VMO integral operators, but these were not available in functions form a predual for the first Hardy space. the literature. So they developed what they needed, This function space is actually a subspace of BMO. and what resulted was the extremely useful notion Nirenberg and Brezis extended the “degree theory” of a pseudodifferential operator. This has helped in topology to mappings belonging to VMO, a result generate copious developments. Another impor- that took topologists by surprise. A fundamental tant work was the one with François Treves on question in the study of complex manifolds is: the solvability of general linear PDEs. Some other When is an almost complex structure given by a highlights are his research on the regularity of complex structure? A manifold is a topological free boundary problems with David Kinderlehrer space that can be locally described in terms of and Joel Spruck.
Recommended publications
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Transactions American Mathematical Society
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY EDITED BY A. A. ALBERT OSCAR ZARISKI ANTONI ZYGMUND WITH THE COOPERATION OF RICHARD BRAUER NELSON DUNFORD WILLIAM FELLER G. A. HEDLUND NATHAN JACOBSON IRVING KAPLANSKY S. C. KLEENE M. S. KNEBELMAN SAUNDERS MacLANE C. B. MORREY W. T. REID O. F. G. SCHILLING N. E. STEENROD J. J. STOKER D. J. STRUIK HASSLER WHITNEY R. L. WILDER VOLUME 62 JULY TO DECEMBER 1947 PUBLISHED BY THE SOCIETY MENASHA, WIS., AND NEW YORK 1947 Reprinted with the permission of The American Mathematical Society Johnson Reprint Corporation Johnson Reprint Company Limited 111 Fifth Avenue, New York, N. Y. 10003 Berkeley Square House, London, W. 1 First reprinting, 1964, Johnson Reprint Corporation PRINTED IN THE UNITED STATES OF AMERICA TABLE OF CONTENTS VOLUME 62, JULY TO DECEMBER, 1947 Arens, R. F., and Kelley, J. L. Characterizations of the space of con- tinuous functions over a compact Hausdorff space. 499 Baer, R. Direct decompositions. 62 Bellman, R. On the boundedness of solutions of nonlinear differential and difference equations. 357 Bergman, S. Two-dimensional subsonic flows of a compressible fluid and their singularities. 452 Blumenthal, L. M. Congruence and superposability in elliptic space.. 431 Chang, S. C. Errata for Contributions to projective theory of singular points of space curves. 548 Day, M. M. Polygons circumscribed about closed convex curves. 315 Day, M. M. Some characterizations of inner-product spaces. 320 Dushnik, B. Maximal sums of ordinals. 240 Eilenberg, S. Errata for Homology of spaces with operators. 1. 548 Erdös, P., and Fried, H. On the connection between gaps in power series and the roots of their partial sums.
    [Show full text]
  • J´Ozef Marcinkiewicz
    JOZEF¶ MARCINKIEWICZ: ANALYSIS AND PROBABILITY N. H. BINGHAM, Imperial College London Pozna¶n,30 June 2010 JOZEF¶ MARCINKIEWICZ Life Born 4 March 1910, Cimoszka, Bialystok, Poland Student, 1930-33, University of Stefan Batory in Wilno (professors Stefan Kempisty, Juliusz Rudnicki and Antoni Zygmund) 1931-32: taught Lebesgue integration and trigono- metric series by Zygmund MA 1933; military service 1933-34 PhD 1935, under Zygmund 1935-36, Fellowship, U. Lw¶ow,with Kaczmarz and Schauder 1936, senior assistant, Wilno; dozent, 1937 Spring 1939, Fellowship, Paris; o®ered chair by U. Pozna¶n August 1939: in England; returned to Poland in anticipation of war (he was an o±cer in the reserve); already in uniform by 2 September Second lieutenant, 2nd Battalion, 205th In- fantry Regiment Defence of Lwo¶w12 - 21 September 1939; Lwo¶wsurrendered to Red (Soviet) Army Prisoner of war 25 September ("temporary in- ternment" by USSR); taken to Starobielsk Presumed executed Starobielsk, or Kharkov, or Kozielsk, or Katy¶n;Katy¶nMassacre commem- orated on 10 April Work We outline (most of) the main areas in which M's influence is directly seen today, and sketch the current state of (most of) his areas of in- terest { all in a very healthy state, an indication of M's (and Z's) excellent mathematical taste. 55 papers 1933-45 (the last few posthumous) Collaborators: Zygmund 15, S. Bergman 2, B. Jessen, S. Kaczmarz, R. Salem Papers (analysed by Zygmund) on: Functions of a real variable Trigonometric series Trigonometric interpolation Functional operations Orthogonal systems Functions of a complex variable Calculus of probability MATHEMATICS IN POLAND BETWEEN THE WARS K.
    [Show full text]
  • Marshall Stone Y Las Matemáticas
    MARSHALL STONE Y LAS MATEMÁTICAS Referencia: 1998. Semanario Universidad, San José. Costa Rica. Marshall Harvey Stone nació en Nueva York el 8 de abril de 1903. A los 16 años entró a Harvard y se graduó summa cum laude en 1922. Antes de ser profesor de Harvard entre 1933 y 1946, fue profesor en Columbia (1925-1927), Harvard (1929-1931), Yale (1931-1933) y Stanford en el verano de 1933. Aunque graduado y profesor en Harvard University, se conoce más por haber convertido el Departamento de Matemática de la University of Chicago -como su Director- en uno de los principales centros matemáticos del mundo, lo que logró con la contratación de los famosos matemáticos Andre Weil, S. S. Chern, Antoni Zygmund, Saunders Mac Lane y Adrian Albert. También fueron contratados en esa época: Paul Halmos, Irving Seal y Edwin Spanier. Para Saunders Mac Lane, el Departamento de Matemática que constituyó Stone en Chicago fue en su momento “sin duda el departamento de matemáticas líder en el país”., y probablemente, deberíamos añadir, en el mundo. Los méritos científicos de Stone fueron muchos. Cuando llegó a Chicago en 1946, por recomendación de John von Neumann al presidente de la Universidad de Chicago, ya había realizado importantes trabajos en varias áreas matemáticas, por ejemplo: la teoría espectral de operadores autoadjuntos en espacios de Hilbert y en las propiedades algebraicas de álgebras booleanas en el estudio de anillos de funciones continuas. Se le conoce por el famoso teorema de Stone Weierstrass, así como la compactificación de Stone Cech. Su libro más influyente fue Linear Transformations in Hilbert Space and their Application to Analysis.
    [Show full text]
  • Irving Kaplansky
    Portraying and remembering Irving Kaplansky Hyman Bass University of Michigan Mathematical Sciences Research Institute • February 23, 2007 1 Irving (“Kap”) Kaplansky “infinitely algebraic” “I liked the algebraic way of looking at things. I’m additionally fascinated when the algebraic method is applied to infinite objects.” 1917 - 2006 A Gallery of Portraits 2 Family portrait: Kap as son • Born 22 March, 1917 in Toronto, (youngest of 4 children) shortly after his parents emigrated to Canada from Poland. • Father Samuel: Studied to be a rabbi in Poland; worked as a tailor in Toronto. • Mother Anna: Little schooling, but enterprising: “Health Bread Bakeries” supported (& employed) the whole family 3 Kap’s father’s grandfather Kap’s father’s parents Kap (age 4) with family 4 Family Portrait: Kap as father • 1951: Married Chellie Brenner, a grad student at Harvard Warm hearted, ebullient, outwardly emotional (unlike Kap) • Three children: Steven, Alex, Lucy "He taught me and my brothers a lot, (including) what is really the most important lesson: to do the thing you love and not worry about making money." • Died 25 June, 2006, at Steven’s home in Sherman Oaks, CA Eight months before his death he was still doing mathematics. Steven asked, -“What are you working on, Dad?” -“It would take too long to explain.” 5 Kap & Chellie marry 1951 Family portrait, 1972 Alex Steven Lucy Kap Chellie 6 Kap – The perfect accompanist “At age 4, I was taken to a Yiddish musical, Die Goldene Kala. It was a revelation to me that there could be this kind of entertainment with music.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • Luis Caffarelli Lecture Notes
    Luis Caffarelli Lecture Notes Broddie often melodizes stunningly when tautological Robert misforms robustiously and christens her irade. Stuffed Wojciech manoeuvre palatially, he overcrop his antibodies very sorrowfully. Sopping Giffy mystifies oracularly. The sponsors and was a review team, lecture notes that reflects exceptional mathematical analysis this item to seeing people around topics discussed are lipschitz Dirección de correo verificada de sissa. Communications on homeland and Applied Mathematics. The stamp problem it the biharmonic operator. The wreck of this lecture is void discuss three problems in homogenization and their interplay. Nirenberg should phone to study theoretical physics. Walter was a highly regarded researcher in analysis and control theory. Fundamental solutions of homogeneous fully nonlinear elliptic equations. Regularity of news free accident with application to the Pompeiu problem. Talks were uniformly excellent. Proceedings of the International Congress of Mathematicians. The nonlinear character while the equations is used in gravel essential way, whatsoever he obtains results because are the nonlinearity not slate it. Caffarelli, Luis; Silvestre, Luis. Don worked with luis caffarelli lecture notes in many years ago with students, avner variational problems in any book contains the error has had three stellar researchers. The smoothness of separate free surface tablet a filtration problem. Nike sneaker in above one week. The continuity of the temperature in the Stefan problem. Axially symmetric infinite cavities. The subtle problem every two fluids. On the regularity of reflector antennas. Nav start or be logged at this place although if instant is NOT progressively loaded. Laplacian and the water obstacle problem. Growing up with luis caffarelli lecture notes in.
    [Show full text]
  • UT Austin Professor, Luis Caffarelli, Wins Prestigious Wolf Prize Porto Students Conduct Exploratory Visits
    JANUARY//2012 NUMBER//41 UT Austin Professor, Luis Caffarelli, wins prestigious Wolf Prize Luis Caffarelli, a mathematician, Caffarelli’s research interests include Professor at the Institute for Compu- nonlinear analysis, partial differential tational Engineering and Sciences equations and their applications, (ICES) at the University of Texas at calculus of variations and optimiza- Austin and Director of CoLab tion. The ICES Professor is also widely Mathematics Program, has been recognized as the world’s leading named a winner of Israel’s prestigious specialist in free-boundary problems Wolf Prize, in the mathematics for nonlinear partial differential category. equations. This prize, which consists of a cer- Each year this prize is awarded to tificate and a monetary award of specialists in the fields of agriculture, $100,000, “is further evidence of chemistry, mathematics, physics Luis’ huge impact”, according to and the arts. Caffarelli will share the Alan Reid (Chair of the Department 2012 mathematics prize with of Mathematics). “I feel deeply Michael Aschbacher, a professor at honored”, states Caffarelli, who joins the California Institute of Technology. the UT Austin professors John Tate (Mathematics, 2002) and Allen Bard Link for Institute for Computational UT Austin Professor, Luis Caffarelli (Chemistry, 2008) as a Wolf Prize Engineering and Sciences: winner. http://www.ices.utexas.edu/ Porto Students Conduct Exploratory Visits UT Austin welcomed several visitors at the end of the Fall animation. Bastos felt he benefited greatly from the visit, 2011 semester, including Digital Media doctoral students commenting, “The time I spent in Austin and in College Pedro Bastos, Rui Dias, Filipe Lopes, and George Siorios of Station was everything I expected and more.
    [Show full text]
  • EMS Newsletter September 2012 1 EMS Agenda EMS Executive Committee EMS Agenda
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. Matemática, Faculdade Facultad de Matematicas de Ciências, Edifício C6, Universidad Complutense Piso 2 Campo Grande Mathematical de Madrid 1749-006 Lisboa, Portugal e-mail: [email protected] Plaza de Ciencias 3, 28040 Madrid, Spain Eva-Maria Feichtner e-mail: [email protected] (2012–2015) Society Department of Mathematics Lucia Di Vizio (2012–2016) Université de Versailles- University of Bremen St Quentin 28359 Bremen, Germany e-mail: [email protected] Laboratoire de Mathématiques Newsletter No. 85, September 2012 45 avenue des États-Unis Eva Miranda (2010–2013) 78035 Versailles cedex, France Departament de Matemàtica e-mail: [email protected] Aplicada I EMS Agenda .......................................................................................................................................................... 2 EPSEB, Edifici P Editorial – S. Jackowski ........................................................................................................................... 3 Associate Editors Universitat Politècnica de Catalunya Opening Ceremony of the 6ECM – M.
    [Show full text]
  • CELEBRATIO MATHEMATICA Saunders Mac Lane (2013) Msp 1
    PROOFS - PAGE NUMBERS ARE TEMPORARY 1 1 1 /2 2 3 4 5 6 7 8 CELEBRATIO 9 10 11 MATHEMATICA 12 13 14 15 16 17 18 Saunders Mac Lane 19 20 1 20 /2 21 22 23 24 25 26 JOHN G. THOMPSON 27 28 THE MAC LANE LECTURE 29 30 2013 31 32 33 34 35 36 37 38 39 1 39 /2 40 41 msp 42 1 43 44 45 http://celebratio.org/ 46 47 48 49 50 51 1 CELEBRATIO MATHEMATICA Saunders Mac Lane (2013) msp 1 THE MAC LANE LECTURE JOHN G. THOMPSON First published: 2 December 2005 Shortly after the death of Saunders Mac Lane in April, Krishna [Alladi] asked me if I would be willing to speak publicly about Saunders. I agreed to do so, but asked for time to think about and to prepare my remarks. In the meantime, Saunders’s autobiography[2005] has appeared, and it has been helpful to me. I expect that everyone here is aware of the book and the movie “A beautiful mind” which explore the life of John Nash. You will know that for many years, Nash was insane with schizophrenia. For most of us, and certainly for me, insanity is frightening and far from beautiful. I submit that Saunders had a genuinely beautiful mind. Except for an elite few of us, Mac Lane’s life and work do not have the drama and punch of Nash’s odyssey. I see my note today as a recorder, neither a hagiographer nor a debunker. Mac Lane’s mental world had great lucidity and covered much territory.
    [Show full text]
  • Arxiv:2105.10149V2 [Math.HO] 27 May 2021
    Extended English version of the paper / Versión extendida en inglés del artículo 1 La Gaceta de la RSME, Vol. 23 (2020), Núm. 2, Págs. 243–261 Remembering Louis Nirenberg and his mathematics Juan Luis Vázquez, Real Academia de Ciencias, Spain Abstract. The article is dedicated to recalling the life and mathematics of Louis Nirenberg, a distinguished Canadian mathematician who recently died in New York, where he lived. An emblematic figure of analysis and partial differential equations in the last century, he was awarded the Abel Prize in 2015. From his watchtower at the Courant Institute in New York, he was for many years a global teacher and master. He was a good friend of Spain. arXiv:2105.10149v2 [math.HO] 27 May 2021 One of the wonders of mathematics is you go somewhere in the world and you meet other mathematicians, and it is like one big family. This large family is a wonderful joy.1 1. Introduction This article is dedicated to remembering the life and work of the prestigious Canadian mathematician Louis Nirenberg, born in Hamilton, Ontario, in 1925, who died in New York on January 26, 2020, at the age of 94. Professor for much of his life at the mythical Courant Institute of New York University, he was considered one of the best mathematical analysts of the 20th century, a specialist in the analysis of partial differential equations (PDEs for short). 1From an interview with Louis Nirenberg appeared in Notices of the AMS, 2002, [43] 2 Louis Nirenberg When the news of his death was received, it was a very sad moment for many mathematicians, but it was also the opportunity of reviewing an exemplary life and underlining some of its landmarks.
    [Show full text]