Your Guide to Better Beach Photography by Sarah Vaughn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View and Print This Publication
@ SOUTHWEST FOREST SERVICE Forest and R U. S.DEPARTMENT OF AGRICULTURE P.0. BOX 245, BERKELEY, CALIFORNIA 94701 Experime Computation of times of sunrise, sunset, and twilight in or near mountainous terrain Bill 6. Ryan Times of sunrise and sunset at specific mountain- ous locations often are important influences on for- estry operations. The change of heating of slopes and terrain at sunrise and sunset affects temperature, air density, and wind. The times of the changes in heat- ing are related to the times of reversal of slope and valley flows, surfacing of strong winds aloft, and the USDA Forest Service penetration inland of the sea breeze. The times when Research NO& PSW- 322 these meteorological reactions occur must be known 1977 if we are to predict fire behavior, smolce dispersion and trajectory, fallout patterns of airborne seeding and spraying, and prescribed burn results. ICnowledge of times of different levels of illumination, such as the beginning and ending of twilight, is necessary for scheduling operations or recreational endeavors that require natural light. The times of sunrise, sunset, and twilight at any particular location depend on such factors as latitude, longitude, time of year, elevation, and heights of the surrounding terrain. Use of the tables (such as The 1 Air Almanac1) to determine times is inconvenient Ryan, Bill C. because each table is applicable to only one location. 1977. Computation of times of sunrise, sunset, and hvilight in or near mountainous tersain. USDA Different tables are needed for each location and Forest Serv. Res. Note PSW-322, 4 p. Pacific corrections must then be made to the tables to ac- Southwest Forest and Range Exp. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
DTA Scoring Form
Daytime Astronomy SHADOWS Score Form Date ____/____/____ Student _______________________________________ Rater _________________ Problem I. (Page 3) Accuracy of results Draw a dot on this map to show where you think Tower C is. Tower C is in Eastern US Tower C is in North Eastern US Tower C is somewhere in between Pennsylvania and Maine Modeling/reasoning/observation How did you figure out where Tower C is? Matched shadow lengths of towers A and B/ pointed flashlight to Equator Tried different locations for tower C/ inferred location of tower C Matched length of shadow C/considered Latitude (distance from Equator) Matched angle of shadow C/ considered Longitude (East-West direction) Problem II. (Page 4) Accuracy of results How does the shadow of Tower A look at 10 AM and 3 PM?... Which direction is the shadow moving? 10 AM shadow points to NNW 10 AM shadow is shorter than noon shadow 3 PM shadow points to NE 3 PM shadow is longer than noon shadow Clockwise motion of shadows Modeling/reasoning/observation How did you figure out what the shadow of Tower A looks like at 10 AM and 3 PM? Earth rotation/ "Sun motion" Sunlight coming from East projects a shadow oriented to West Sunlight coming from West projects a shadow oriented to East Sunlight coming from above us projects a shadow oriented to North Sun shadows are longer in the morning than at noon Morning Sun shadows become shorter and shorter until its noon The shortest Sun shadow is at noon Sun shadows are longer in the afternoon than at noon Afternoon Sun shadows become longer and longer until it gets dark (Over, please) - 1 - 6/95 Problem III. -
Chapter 19 the Almanacs
CHAPTER 19 THE ALMANACS PURPOSE OF ALMANACS 1900. Introduction The Air Almanac was originally intended for air navigators, but is used today mostly by a segment of the Celestial navigation requires accurate predictions of the maritime community. In general, the information is similar to geographic positions of the celestial bodies observed. These the Nautical Almanac, but is given to a precision of 1' of arc predictions are available from three almanacs published and 1 second of time, at intervals of 10 minutes (values for annually by the United States Naval Observatory and H. M. the Sun and Aries are given to a precision of 0.1'). This Nautical Almanac Office, Royal Greenwich Observatory. publication is suitable for ordinary navigation at sea, but The Astronomical Almanac precisely tabulates celestial lacks the precision of the Nautical Almanac, and provides data for the exacting requirements found in several scientific GHA and declination for only the 57 commonly used fields. Its precision is far greater than that required by navigation stars. celestial navigation. Even if the Astronomical Almanac is The Multi-Year Interactive Computer Almanac used for celestial navigation, it will not necessarily result in (MICA) is a computerized almanac produced by the U.S. more accurate fixes due to the limitations of other aspects of Naval Observatory. This and other web-based calculators are the celestial navigation process. available from: http://aa.usno.navy.mil. The Navy’s The Nautical Almanac contains the astronomical STELLA program, found aboard all seagoing naval vessels, information specifically needed by marine navigators. contains an interactive almanac as well. -
How the Sun Paints the Sky the Generation of Its Colour and Luminosity Bob Fosbury European Southern Observatory and University College London
How the Sun Paints the Sky The generation of its colour and luminosity Bob Fosbury European Southern Observatory and University College London Introduction: the 19th century context — science and painting The appearance of a brilliantly clear night sky must surely have stimulated the curiosity of our earliest ancestors and provided them with the foundation upon which their descendants built the entire edifice of science. This is a conclusion that would be dramatically affirmed if any one of us were to look upwards in clear weather from a location that is not polluted by artificial light: an increasingly rare possibility now, but one that provides a welcome regeneration of the sense of wonder. What happened when our ancient ancestors gazed instead at the sky in daylight or twilight? It is difficult to gauge from written evidence as there was such variation in the language of description among different cultures (see “Sky in a bottle” by Peter Pesic. MIT Press, 2005. ISBN 0-262-16234-2). The blue colour of a cloudless sky was described in a remarkable variety of language, but the question of its cause most often remained in the realm of a superior being. Its nature did concern the Greek philosophers but they appeared to describe surfaces and objects in the language of texture rather than colour: they did not have a word for blue. It was only during the last millennium that thinkers really tried to get to grips with the problem, with Leonardo da Vinci, Isaac Newton and Johann Wolfgang von Goethe all applying themselves. It was not easy however, and no real progress was made until the mid-19th century when there was a focus of the greatest scientific minds of the time on the problem of both the colour and the what was then the novel property of polarisation of the light. -
Sky Watch Heard Most Weekdays on WFWM, FSU's Public Supported
Night Highlights – Dec.2014 through Dec.2015 by Dr. Bob Doyle, Frostburg State Planetarium Dr. Doyle’s email is: [email protected]: His office phone number is (301) 687-7799 MOON – Earth’s companion both orbits Earth and rotates in 27.32 E. days so one side of moon always faces Earth (while other side is turned away from us). Moon’s cycle of lighted shapes (phases) lasts 29.53 E. days, as the phases also depend on direction of sun (appears to move 30 degrees eastward each month along zodiac). The moon is seen about 13 days growing in the evening from a slender crescent ( ) ) to Full, followed by an equal time shrinking (mainly seen in the a.m. sky) and then 3 days hidden in sun’s glare. Key Moon Phases (D) moon ½ full in evening (best for crater & mountain viewing ) & (O) full moon (see all lava plains) (Dec. ’14, 6 -O, 28 – D)) // (Jan. ’15, 4 - O, 26 - D), // (Feb. ’15, 3 – O, 25 - D) // (Mar. 5 – O, 27 – D) (Apr. 4 – O, 25 – D), // ( May 3 – O, 25 - D) // (Jun., 2- O, 27 – D)) // (Jul., 1 – O, 24 –D, 31 –O (Blue Moon)) (Aug., 22 – D, 29 – O) // (Sep., 20 – D, 27 – O (Harvest Moon)) // (Oct. 20 – D, 27 – O (Hunters’ Moon)) // (Nov., 19 – D, 25 – O) // (Dec., 18 – D, 25 – O (Long Night Moon)) (D = ½ full, O = full) THE 5 BRIGHT PLANETS (Mercury, Venus, Mars, Jupiter & Saturn): Uranus, Neptune are much dimmer. When high above horizon, planets appear as points of light that shine steadily. -
The Blue Hours Dusk, Early September, Just Beneath the Arctic
The Blue Hours Dusk, early September, just beneath the Arctic Circle, by a tideline glacier in East Greenland. The cusp of the seasons, the cusp of the globe, the cusp of the land, and the day’s cusp too: twilight, the blue hours. At this latitude, at this time of year, dusk lasts for two or three hours. We have returned from a long mountain day: pitched climbing up steep slabs and over snow slopes to a towered summit, from which height we could see the great inland ice-cap itself. Then down, late in the day, the darkness thickening around us, and the sun dropping fast behind the western peaks. So we sit together back at camp as the last light gathers on the water of the fjord, on icebergs, on the quartz seams in the white boulder-field above our tents. Twilight specifies the landscape in this way – but it also disperses it. Relations between objects are loosened, such that shape-shifts occur. Just before full night falls, and the aurora borealis begins, a powerful hallucination occurs. My tired eyes start to see every pale stone around our tent not as boulder but as bear, polar bear, pure bear, crouched for the spring. Across the Northern hemisphere, twilight is known as the trickster-time: breeder of delusion, feeder of fantasies, zone of becomings. In Greek, dusk is called lykophos, ‘wolf-light’. In Austria, too, it is Wolflicht. In French it is the phase entre chien et loup, ‘between dog and wolf’: the time when, as Chrystel Lebas has written, ‘it is nearly impossible to tell the difference between the howling sound coming from the two animals, when the domestic and familiar transform into the wild.’ I do not know the Greenlandic word for dusk, but perhaps it would translate as ‘bear-light’. -
Midnight Sun and Northern Lights Name
volume 3 Midnight Sun and issue 5 Northern Lights It’s black, which absorbs the sun’s warmth. In fact, polar midnight, bears feel hot if the temperature rises above freezing. but the sun The polar nights are long and dark, but sometimes is shining there’s a light show in the sky. The northern lights, which brightly. Where are called the aurora, are often green or pink. They seem are you? You’re to wave and dance in the sky. Auroras are caused by gas in the Arctic, particles that were thrown off by the sun. These particles near the North collide in Earth’s atmosphere and make a beautiful show. Pole. During Few people live in the Arctic because it’s so cold, but the arctic Canada, Greenland, Norway, Iceland, and Russia are summer, the good places to see the midnight sun and the aurora. In ©2010 by Asbjørn Floden in Flickr. Some rights reserved http://creativecommons.org/licenses/by-nc/2.0/deed.en sun doesn’t fact, Norway is often called the Land of the Midnight set for months. Instead, it goes around the horizon. You Sun. could read outside at midnight. As you travel south The temperature stays warm, too, although not as from the North Pole, warm as where you live. The average temperature in there is less midnight sun the summer near the North Pole is about 32 degrees, and fewer northern lights. or freezing. That may sound cold to you, but it’s warm It gets warmer, too. Soon, in the Arctic. -
Iceland Panorama
Iceland Panorama August 5th - 12th 2018 From steamy hot springs to top-notch spas, spectacular scenery to magnificent art museums, this unique land is the perfect place to relax, recharge, and explore. Legends say that the ancient gods themselves guided Iceland’s first settler, Ingolfur Arnarson, to make his home in Reykjavik (“Smoky Bay”), named after the geothermal steam he saw. Today this geothermal energy heats homes and outdoor swimming pools throughout the city – a pollution-free energy source that leaves the air outstandingly fresh, clean and clear. Renowned for its spellbinding beauty and stunning landscape, Iceland is the only place on Earth where you can stand on top of the Atlantic Ocean’s submarine mountain chain - for the island is the only place where the chain peaks up above sea level! From this perch, we can walk from North America to Europe. We’ll journey through the north, south, and west of the island, enjoying the long evening twilight of the northern summer and visit a wondrous variety of small settlements, good-size towns and amazing natural landscapes. This captivating geological wonderland offers the opportunity to explore dramatic phenomena: colossal glaciers, active volcanoes, geysers, hot springs, glacial rivers, cascading waterfalls, moss-covered lava fields, and glacial lagoons. We’ll dine on Icelandic specialties, including seafood, ocean-fresh from the morning’s catch; highland lamb; and unusual varieties of game. It’s purely natural food imaginatively served. The cost of this itinerary, per person, double occupancy is: Join a Tufts faculty host and specially selected local guide, Boston Departure $3990 Svanur Thorkelsson on an amazing adventure this summer Land only (no airfare included) $3290 to the Land of Fire and Ice. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Shadows of Venus 29 November 2005
Shadows of Venus 29 November 2005 he continues, "I found myself in Sir Patrick's home. The conversation turned to things that had never been photographed. He told me that there were few, if any, decent photographs of a shadow caused by the light from Venus. So the challenge was set." On Nov. 18, Lawrence took his own young boys, Richard (age 14) and Douglas (age 12), to a beach near their home. "There was no ambient lighting, no moon, no manmade lights, only Venus and the stars. It was the perfect venue to make my attempt." On that night, and again two nights later, they photographed shadows of their camera's tripod, shadows of patterns cut from cardboard, and The planet Venus is growing so bright, it's shadows of the boy's hands--all by the light of actually casting shadows. Venus. It's often said (by astronomers) that Venus is bright The shadows were very delicate, "the slightest enough to cast shadows. So where are they? Few movement destroyed their distinct sharpness. It is people have ever seen a Venus shadow. But difficult," he adds, "for a cold human being to stand they're there, elusive and delicate--and, if you still long enough for the amount of time needed to appreciate rare things, a thrill to witness. Attention, catch the faint Venusian shadow." thrill-seekers: Venus is reaching its peak brightness for 2005 and casting its very best Difficult, yes, but worth the effort, he says. After all, shadows right now. how many people have seen themselves silhouetted by the light of another planet? Image: Richard and Douglas Lawrence make hand shadows using the light of Venus. -
Midnight Sun, Part II by PA Lassiter
Midnight Sun, Part II by PA Lassiter . N.B. These chapters are based on characters created by Stephenie Meyer in Twilight, the novel. The title used here, Midnight Sun, some of the chapter titles, and all the non-interior dialogue between Edward and Bella are copyright Stephenie Meyer. The first half of Ms. Meyer’s rough-draft novel, of which this is a continuation, can be found at her website here: http://www.stepheniemeyer.com/pdf/midnightsun_partial_draft4.pdf 12. COMPLICATIONSPart B It was well after midnight when I found myself slipping through Bella’s window. This was becoming a habit that, in the light of day, I knew I should attempt to curb. But after nighttime fell and I had huntedfor though these visits might be irresponsible, I was determined they not be recklessall of my resolve quickly faded. There she lay, the sheet and blanket coiled around her restless body, her feet bound up outside the covers. I inhaled deeply through my nose, welcoming the searing pain that coursed down my throat. As always, Bella’s bedroom was warm and humid and saturated with her scent. Venom flowed into my mouth and my muscles tensed in readiness. But for what? Could I ever train my body to give up this devilish reaction to my beloved’s smell? I feared not. Cautiously, I held my breath and moved to her bedside. I untangled the bedclothes and spread them carefully over her again. She twitched suddenly, her legs scissoring as she rolled to her other side. I froze. “Edward,” she breathed.