A&A 549, A142 (2013) Astronomy DOI: 10.1051/0004-6361/201219244 & c ESO 2013 Astrophysics Ram pressure and dusty red galaxies – key factors in the evolution of the multiple cluster system Abell 901/902 B. Bösch1, A. Böhm1,C.Wolf2, A. Aragón-Salamanca3,M.Barden1,M.E.Gray3,B.L.Ziegler4, S. Schindler1, and M. Balogh5 1 Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria e-mail:
[email protected] 2 Department of Physics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH, UK 3 School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham NG7 2RD, UK 4 Department of Astronomy, University of Vienna, Türkenschanzstr. 17, 1180 Wien, Austria 5 Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Received 19 March 2012 / Accepted 16 November 2012 ABSTRACT Aims. We present spectroscopic observations of 182 disk galaxies (96 in the cluster and 86 in the field environment) in the region of the Abell 901/902 multiple cluster system, which is located at a redshift of z ∼ 0.165. We estimate dynamical parameters of the four subclusters and analyse the kinematics of spiral galaxies, searching for indications of ram-pressure stripping. Furthermore, we focus on dusty red galaxies as a possible intermediate stage in the transformation of field galaxies to lenticulars when falling into the cluster. Methods. We obtained multi-object slit spectroscopy using the VLT instrument VIMOS. We carried out a redshift analysis, determined velocity dispersions using biweight statistics, and detected possible substructures with the Dressler-Shectman test.