The Cracked Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Information Suphannee Sivakorn∗, Iasonas Polakis∗ and Angelos D. Keromytis Department of Computer Science Columbia University, New York, USA fsuphannee, polakis,
[email protected] ∗Joint primary authors Abstract—The widespread demand for online privacy, also the necessity of securing web connections from prying eyes. fueled by widely-publicized demonstrations of session hijacking The publicity garnered by the Firesheep extension [1], which attacks against popular websites, has spearheaded the increasing demonstrated how easily attackers can hijack a user’s session, deployment of HTTPS. However, many websites still avoid ubiq- uitous encryption due to performance or compatibility issues. The was a catalyst in expediting migration of critical user activity prevailing approach in these cases is to force critical functionality to mandatory HTTPS connections in major services (e.g., and sensitive data access over encrypted connections, while transmitting user credentials during the log-in process). allowing more innocuous functionality to be accessed over HTTP. Nonetheless, many major websites continue to serve content In practice, this approach is prone to flaws that can expose over unencrypted connections, which exposes the users’ HTTP sensitive information or functionality to third parties. In this paper, we conduct an in-depth assessment of a diverse cookies to attackers monitoring their traffic. Not enforcing set of major websites and explore what functionality and infor- ubiquitous encrypted connections may be attributed to various mation is exposed to attackers that have hijacked a user’s HTTP reasons, ranging from potential increases to infrastructure costs cookies. We identify a recurring pattern across websites with and the loss of in-network functionality [2] to maintaining partially deployed HTTPS; service personalization inadvertently support for legacy clients.