The High Energy Telescope on Solar Orbiter - Development and Validation of the Onboard Data Processing

Total Page:16

File Type:pdf, Size:1020Kb

The High Energy Telescope on Solar Orbiter - Development and Validation of the Onboard Data Processing The High Energy Telescope on Solar Orbiter - Development and Validation of the Onboard Data Processing Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Christian-Albrechts-Universit¨atzu Kiel vorgelegt von Robert Elftmann Kiel, Mai 2020 Erster Gutachter: Prof. Dr. R.F. Wimmer-Schweingruber Zweiter Gutachter: Prof. Dr. H. Kersten Tag der m¨undlichen Pr¨ufung: 21.07.20 Zum Druck genehmigt: 21.07.20 II Zusammenfassung Die Raumsonde Solar Orbiter der Europ¨aischen Raumfahrtorganisation ESA wurde erfolgreich am 10.02.2020 von Cape Canaveral in den USA gestartet. Im Laufe der sieben j¨ahrigen nominellen Missionsphase wird sie sich bis auf eine Distanz von 0.27 astronomischen Einheiten an die Sonne ann¨ahernum diese zu studieren. Solar Orbiter wird dazu beitragen offene wissenschaftliche Fra- gen zu den Vorg¨angenauf und innerhalb der Sonne zu beantworten. Dazu ist die Raumsonde mit einer Anzahl an wissenschaftlichen Messinstrumenten ausge- stattet, die sich aus Fernerkundungs- sowie In-situ-Instrumenten zusammensetzt. Eines dieser Messinstrumente ist der Energetic-Particle-Detector (EPD), der aus vier separaten Teleskopen besteht: dem Suprathermal Electron and Proton - Teleskop (STEP), dem Electron and Proton Telescope (EPT), dem Suprather- mal Ion Spectrograph (SIS) und dem High Energy Telescope (HET). HET misst Elektronen mit Energien zwischen 0.45 bis 18 MeV, Protonen mit Energien zwi- schen 7 bis 105 MeV und Schwerionen im Energiebereich von 7 bis zu mehreren hundert MeV/nuc. Dabei k¨onnendie individuellen Teilchen- und Ionenspezies identifiziert werden und sogar eine Trennung der Heliumisotope 3He und 4He bis zu einem Verh¨altnis von 1% ist m¨oglich. Damit ist HET in der Lage die en- ergieabh¨angigeTeilchenkomposition von solaren energiereichen Teilchenereignis- sen in den angegebenen Energiebereichen zu messen und einen Einblick in deren Beschleunigungs- und Propagationsprozesse zu liefern. Diese Arbeit besch¨aftigtsich mit der Entwicklung der onboard Datenverarbeitung des HET, welche die wissenschaftlichen Daten definiert, die zur Charakterisierung der gemessenen Teilchenumgebung zur Verf¨ugungstehen. Als Teil der im Rahmen dieser Arbeit durchgef¨uhrtenVorstudien wird der Einfluss der Instrumententemperatur auf die Messung von Schwerionen in Bezug auf den von HET verwendeten Szintillationskristall untersucht. Dabei wird gezeigt, dass die Nichtlinearit¨atin der Lichtausbeute, genannt Ionisationsquenching, welche durch hohe Ionisationsdichten bei der Detektion von Schwerionen auftreten, im Falle des untersuchten Szintillationskristalls temperaturunabh¨angigist. Die Er- gebnisse dieser Studie wurden in der Zeitschrift \Nuclear Instruments and Meth- ods in Physics Research Section B: Beam Interactions with Materials and Atoms", Volume 451 (2019), ver¨offentlicht. Basierend auf den Ergebnissen k¨onnenf¨urdie Entwicklung der onboard Datenverarbeitung bestehende Modelle zur Vorhersage III des Ionisationsquenchings genutzt werden. Aufgrund der Telemetrielimitierung f¨urdie Instrumente auf Solar Orbiter ist es notwendig, dass gemessene Daten bereits vor der Ubermittlung¨ kategorisiert und ausgewertet werden. Die als Teil dieser Arbeit entwickelte onboard Datenverar- beitung wird nachvollziehbar und detailliert beschrieben. Die im Rahmen dieser Arbeit erstellten Simulationen, welche die Wechselwirkung von geladenen en- ergiereichen Teilchen mit HET beschreiben und f¨urdie Entwicklung der onboard Datenverarbeitung notwendig sind, werden ebenso pr¨asentiert und dokumentiert. Die damit entwickelte onboard Datenverarbeitung analysiert detektierte Teilchen und ordnet sie entsprechend ihrer Energie und Teilchenspezies in vordefinierte Histogramme ein. Basierend auf diesen Histogrammen werden Datenprodukte definiert, die Ausschnitte der Histogramme in vordefinierten Kadenzen zur Ver- f¨ugungstellen. Um aus diesen Ausschnitten R¨uckschl¨usseauf die Teilchenumge- bung zu ziehen, werden Umrechnungsfaktoren im Rahmen dieser Arbeit berech- net und zur Verf¨ugunggestellt. Mittels der entwickelten Datenprodukte und deren Umrechnungsfaktoren werden die M¨oglichkeiten des HET f¨urdie Messung von solaren energiereichen Teilchener- eignissen basierend auf Simulation mit zu erwartenden spektralen Eigenschaften und Kompositionen sowie Messungen von Instrumenten fr¨uhererMissionen auf- gezeigt. F¨ureine Validierung der onboard Datenverarbeitung sowie der definierten Daten- produkte werden Messungen an einem Schwerionenbeschleuniger sowie die er- sten Daten der Mission genutzt. Basierend auf den ersten Daten, gemessen in einer realen isotropen Teilchenumgebung, l¨asstsich feststellen, dass HET die er- warteten Daten liefert und in großen Teilen wie vorhergesehen funktioniert. Erste Optimierungen der HET Datenverarbeitung, um diese an die reale Teilchenumge- bung anzupassen, wurden ebenfalls im Rahmen dieser Arbeit entwickelt und be- reits auf dem Instrument installiert. Neben den prim¨arwissenschaftlichen Ergebnissen, wie z.B. der Temperaturun- abh¨angigkeit vom Ionisationsquenching, stellt diese Arbeit mit den pr¨asentierten Informationen eine vollst¨andige Dokumentation des HET dar, die es Wissen- schaftlern in Zukunft erm¨oglichen wird, die Messdaten des HET nachzuvollziehen, korrekt zu interpretieren und n¨otigenfallsAnpassungen an der onboard Daten- verarbeitung vorzunehmen. IV Abstract The Solar Orbiter spacecraft of the European Space Agency ESA was success- fully launched on the 10th of February 2020 from Cape Canaveral, USA. During the seven-year nominal mission phase, it will travel as close as 0.27 astronomical units to the Sun to study it from up-close. Solar Orbiter will help to address open scientific questions concerning the physical processes on the surface and within the Sun. For this purpose, the spacecraft is equipped with several scien- tific instruments, divided into remote sensing and in-situ instrumentation. One of these instruments is the Energetic-Particle-Detector (EPD), consisting of four individual telescopes: the Suprathermal Electron and Proton - telescope (STEP), the Electron and Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High Energy Telescope (HET). HET measures electrons with en- ergies between 0.45 up to 18 MeV, protons with energies between 7 to 105 MeV and heavy ions in the range of 7 to several hundred MeV/nuc. It also identifies individual particle and ion species and achieves a separation for 3He and 4He isotopes of up to a 1% ratio. With that, HET measures the energy-dependent particle composition of solar energetic particle events in the given energy ranges and provides insight into their acceleration and propagation processes. In this work, the onboard data processing of HET is developed. It defines the available scientific data for the characterization of the measured particle environ- ment. As part of the pre-development studies, the influence of the instrument's tem- perature on the measurement of heavy ions with HET's scintillation crystal is investigated. The analysis has shown, that the non-linearity in light output, called ionization quenching, is independent of temperature in case of the scintil- lation material used in HET. Ionization quenching originates from high ionization densities in the scintillation material when detecting heavy ions. The results are published in form of a peer-reviewed paper in \Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms", Volume 451 (2019). Based on these results, existing ionization quenching predic- tion models can be used for the development of the onboard data processing. Due to the limited available telemetry bandwidth of Solar Orbiter, it is necessary to categorize and evaluate measured data prior to transmission to Earth. Since this is a sophisticated compression process, a detailed description of the onboard V data processing, developed in the scope of this thesis, is provided. The performed simulations, describing the interaction of energetic charged particles with HET, which are essential for the development of HET's onboard data processing are presented in detail. Based on the simulation data, the onboard data processing of HET is developed. The resulting procedures analyze measured particles and assign them to pre-defined histograms based on the particle's energy and species. Based on these histograms, data products are defined, which provide selected parts of these histograms in pre-defined cadences. The necessary conversion fac- tors for inferring the measured particle environment based on the defined data products are calculated and provided as part of this thesis. According to the developed data products and their calculated conversion fac- tors, the capabilities of HET for the detection of solar energetic particle events are investigated and presented using simulations of the expected spectral proper- ties and particle compositions, as well as using measurements of instruments of previous missions. The onboard data processing of HET and the defined data products are validated, based on experiments at a heavy ion acceleration facility and the first mission data. From the first data measured by HET during the mission in a real isotropic particle environment, it can be concluded, that HET delivers the expected data and performs as expected in most aspects. Based on this data, optimizations of the onboard data processing are developed in the scope of this thesis and are installed on the HET instrument. In addition to the primary scientific results,
Recommended publications
  • ESA Missions AO Analysis
    ESA Announcements of Opportunity Outcome Analysis Arvind Parmar Head, Science Support Office ESA Directorate of Science With thanks to Kate Isaak, Erik Kuulkers, Göran Pilbratt and Norbert Schartel (Project Scientists) ESA UNCLASSIFIED - For Official Use The ESA Fleet for Astrophysics ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 2 ESA Announcement of Observing Opportunities Ø Observing time AOs are normally only used for ESA’s observatory missions – the targets/observing strategies for the other missions are generally the responsibility of the Science Teams. Ø ESA does not provide funding to successful proposers. Ø Results for ESA-led missions with recent AOs presented: • XMM-Newton • INTEGRAL • Herschel Ø Gender information was not requested in the AOs. It has been ”manually” derived by the project scientists and SOC staff. ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 3 XMM-Newton – ESA’s Large X-ray Observatory ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 4 XMM-Newton Ø ESA’s second X-ray observatory. Launched in 1999 with annual calls for observing proposals. Operational. Ø Typically 500 proposals per XMM-Newton Call with an over-subscription in observing time of 5-7. Total of 9233 proposals. Ø The TAC typically consists of 70 scientists divided into 13 panels with an overall TAC chair. Ø Output is >6000 refereed papers in total, >300 per year ESA UNCLASSIFIED - For Official Use
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA Technical Memorandum 85094 SOLAR RADIO BURST AND IN SITU DETERMINATION OF INTERPLANETARY ELECTRON DENSITY (NASA-^'M-85094) SOLAR RADIO BUFST AND IN N83-35989 SITU DETERMINATION OF INTEFPIAKETARY ELECTRON DENSITY SNASA) 26 p EC A03/MF A01 CSCL 03B Unclas G3/9.3 492134 J. L. Bougeret, J. H. King and R. Schwenn OCT Y'183 RECEIVED NASA Sri FACIUTY ACCESS DEPT. September 1883 I 3 National Aeronautics and Space Administration Goddard Spne Flight Center Greenbelt, Maryland 20771 k it R ^ f A SOLAR RADIO BURST AND IN SITU DETERMINATION OF INTERPLANETARY ELECTRON DENSITY J.-L. Bou eret * J.H. Kinr ^i Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight. Center, Greenbelt, Maryland 20771, U.S.A. and R. Schwenn Max-Planck-Institut fOr Aeronomie, Postfach 20, D-3411 Katlenburg-Lindau, Federal Republic of Germany - 2 - °t i t: ABSTRACT i • We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974-1980 Helioi 1 and 2 in situ i i density observations made in the 0.3-1.0 AU range.
    [Show full text]
  • Two Fundamental Theorems About the Definite Integral
    Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than that used by Stewart, but is based on the same fundamental ideas. 1 The definite integral Recall that the expression b f(x) dx ∫a is called the definite integral of f(x) over the interval [a,b] and stands for the area underneath the curve y = f(x) over the interval [a,b] (with the understanding that areas above the x-axis are considered positive and the areas beneath the axis are considered negative). In today's lecture I am going to prove an important connection between the definite integral and the derivative and use that connection to compute the definite integral. The result that I am eventually going to prove sits at the end of a chain of earlier definitions and intermediate results. 2 Some important facts about continuous functions The first intermediate result we are going to have to prove along the way depends on some definitions and theorems concerning continuous functions. Here are those definitions and theorems. The definition of continuity A function f(x) is continuous at a point x = a if the following hold 1. f(a) exists 2. lim f(x) exists xœa 3. lim f(x) = f(a) xœa 1 A function f(x) is continuous in an interval [a,b] if it is continuous at every point in that interval. The extreme value theorem Let f(x) be a continuous function in an interval [a,b].
    [Show full text]
  • Herschel Space Observatory and the NASA Herschel Science Center at IPAC
    Herschel Space Observatory and The NASA Herschel Science Center at IPAC u George Helou u Implementing “Portals to the Universe” Report April, 2012 Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 1 [OIII] 88 µm Herschel: Cornerstone FIR/Submm Observatory z = 3.04 u Three instruments: imaging at {70, 100, 160}, {250, 350 and 500} µm; spectroscopy: grating [55-210]µm, FTS [194-672]µm, Heterodyne [157-625]µm; bolometers, Ge photoconductors, SIS mixers; 3.5m primary at ambient T u ESA mission with significant NASA contributions, May 2009 – February 2013 [+/-months] cold Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 2 Herschel Mission Parameters u Userbase v International; most investigator teams are international u Program Model v Observatory with Guaranteed Time and competed Open Time v ESA “Corner Stone Mission” (>$1B) with significant NASA contributions v NASA Herschel Science Center (NHSC) supports US community u Proposals/cycle (2 Regular Open Time cycles) v Submissions run 500 to 600 total, with >200 with US-based PI (~x3.5 over- subscription) u Users/cycle v US-based co-Investigators >500/cycle on >100 proposals u Funding Model v NASA funds US data analysis based on ESA time allocation u Default Proprietary Data Period v 6 months now, 1 year at start of mission Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 3 Best Practices: International Collaboration u Approach to projects led elsewhere needs to be designed carefully v NHSC Charter remains firstly to support US community v But ultimately success of THE mission helps everyone v Need to express “dual allegiance” well and early to lead/other centers u NHSC became integral part of the larger team, worked for Herschel success, though focused on US community participation v Working closely with US community reveals needs and gaps for all users v Anything developed by NHSC is available to all users of Herschel v Trust follows from good teaming: E.g.
    [Show full text]
  • MATH 1512: Calculus – Spring 2020 (Dual Credit) Instructor: Ariel
    MATH 1512: Calculus – Spring 2020 (Dual Credit) Instructor: Ariel Ramirez, Ph.D. Email: [email protected] Office: LRC 172 Phone: 505-925-8912 OFFICE HOURS: In the Math Center/LRC or by Appointment COURSE DESCRIPTION: Limits. Continuity. Derivative: definition, rules, geometric and rate-of- change interpretations, applications to graphing, linearization and optimization. Integral: definition, fundamental theorem of calculus, substitution, applications to areas, volumes, work, average. Meets New Mexico Lower Division General Education Common Core Curriculum Area II: Mathematics (NMCCN 1614). (4 Credit Hours). Prerequisites: ((123 or ACCUPLACER College-Level Math =100-120) and (150 or ACT Math =28- 31 or SAT Math Section =660-729)) or (153 or ACT Math =>32 or SAT Math Section =>730). COURSE OBJECTIVES: 1. State, motivate and interpret the definitions of continuity, the derivative, and the definite integral of a function, including an illustrative figure, and apply the definition to test for continuity and differentiability. In all cases, limits are computed using correct and clear notation. Student is able to interpret the derivative as an instantaneous rate of change, and the definite integral as an averaging process. 2. Use the derivative to graph functions, approximate functions, and solve optimization problems. In all cases, the work, including all necessary algebra, is shown clearly, concisely, in a well-organized fashion. Graphs are neat and well-annotated, clearly indicating limiting behavior. English sentences summarize the main results and appropriate units are used for all dimensional applications. 3. Graph, differentiate, optimize, approximate and integrate functions containing parameters, and functions defined piecewise. Differentiate and approximate functions defined implicitly. 4. Apply tools from pre-calculus and trigonometry correctly in multi-step problems, such as basic geometric formulas, graphs of basic functions, and algebra to solve equations and inequalities.
    [Show full text]
  • Radial Variation of the Interplanetary Magnetic Field Between 0.3 AU and 1.0 AU
    |00000575|| J. Geophys. 42, 591 - 598, 1977 Journal of Geophysics Radial Variation of the Interplanetary Magnetic Field between 0.3 AU and 1.0 AU Observations by the Helios-I Spacecraft G. Musmann, F.M. Neubauer and E. Lammers Institut for Geophysik and Meteorologie, Technische Universitiit Braunschweig, Mendelssohnstr. lA, D-3300 Braunschweig, Federal Republic of Germany Abstract. We have investigated the radial dependence of the radial and azimuthal components and the magnitude of the interplanetary magnetic field obtained by the Technical University of Braunschweig magnetometer experiment on-board of Helios-1 from December 10, 1974 to first perihelion on March 15, 1975. Absolute values of daily averages of each quantity have been employed. The regression analysis based on power laws leads to 2.55 y x r- 2 · 0 , 2.26 y x r- i.o and F = 5.53 y x r- i. 6 with standard deviations of 2.5 y, 2.0 y and 3.2 y for the radial and azimuthal components and magnitude, respectively. Here r is the radial distance from the sun in astronomical units. The results are compared with results obtained for Mariners 4, 5 and 10 and Pioneers 6 and 10. The differences are probably due to different epochs in the solar cycle and the different statistical techniques used. Key words: Interplanetary magnetic field - Helios-1 results. Introduction The study of the vanat10n of the components and magnitude of the in­ terplanetary magnetic field with heliocentric distance is very intersting at the present time. The mission of Mariner 10 to the inner solar system to a heliocentric distance of 0.46 AU and the missions of Pioneer 10 and Pioneer 11 to the outer solar system to heliocentric distances beyond 5 AU have provided new data over a wide range of heliocentric distance.
    [Show full text]
  • Differentiating an Integral
    Differentiating an Integral P. Haile, February 2020 b(t) Leibniz Rule. If (t) = a(t) f(z, t)dz, then R d b(t) @f(z, t) db da = dz + f (b(t), t) f (a(t), t) . dt @t dt dt Za(t) That’s the rule; now let’s see why this is so. We start by reviewing some things you already know. Let f be a smooth univariate function (i.e., a “nice” function of one variable). We know from the fundamental theorem of calculus that if the function is defined as x (x) = f(z) dz Zc (where c is a constant) then d (x) = f(x). (1) dx You can gain some really useful intuition for this by remembering that the x integral c f(z) dz is the area under the curve y = f(z), between z = a and z = x. Draw this picture to see that as x increases infinitessimally, the added contributionR to the area is f (x). Likewise, if c (x) = f(z) dz Zx then d (x) = f(x). (2) dx Here, an infinitessimal increase in x reduces the area under the curve by an amount equal to the height of the curve. Now suppose f is a function of two variables and define b (t) = f(z, t)dz (3) Za where a and b are constants. Then d (t) b @f(z, t) = dz (4) dt @t Za i.e., we can swap the order of the operations of integration and differentiation and “differentiate under the integral.” You’ve probably done this “swapping” 1 before.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • The Definite Integral
    Mathematics Learning Centre Introduction to Integration Part 2: The Definite Integral Mary Barnes c 1999 University of Sydney Contents 1Introduction 1 1.1 Objectives . ................................. 1 2 Finding Areas 2 3 Areas Under Curves 4 3.1 What is the point of all this? ......................... 6 3.2 Note about summation notation ........................ 6 4 The Definition of the Definite Integral 7 4.1 Notes . ..................................... 7 5 The Fundamental Theorem of the Calculus 8 6 Properties of the Definite Integral 12 7 Some Common Misunderstandings 14 7.1 Arbitrary constants . ............................. 14 7.2 Dummy variables . ............................. 14 8 Another Look at Areas 15 9 The Area Between Two Curves 19 10 Other Applications of the Definite Integral 21 11 Solutions to Exercises 23 Mathematics Learning Centre, University of Sydney 1 1Introduction This unit deals with the definite integral.Itexplains how it is defined, how it is calculated and some of the ways in which it is used. We shall assume that you are already familiar with the process of finding indefinite inte- grals or primitive functions (sometimes called anti-differentiation) and are able to ‘anti- differentiate’ a range of elementary functions. If you are not, you should work through Introduction to Integration Part I: Anti-Differentiation, and make sure you have mastered the ideas in it before you begin work on this unit. 1.1 Objectives By the time you have worked through this unit you should: • Be familiar with the definition of the definite integral as the limit of a sum; • Understand the rule for calculating definite integrals; • Know the statement of the Fundamental Theorem of the Calculus and understand what it means; • Be able to use definite integrals to find areas such as the area between a curve and the x-axis and the area between two curves; • Understand that definite integrals can also be used in other situations where the quantity required can be expressed as the limit of a sum.
    [Show full text]
  • Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71
    Index abundances 164 CIR (corotating interaction region) 3, ACE (Advanced Composition Explorer) 1, 14À15, 32, 36À37, 47, 62, 108, 151, 21, 60, 71, 170À171, 173, 175, 177, 254À255 200, 251 energetic particles 63, 154 SWICS 43, 86 Climax neutron monitor 197 ACRs (anomalous cosmic rays) 10, 12, 197, CME (coronal mass ejection) 3, 14À15, 56, 258À259 64, 86, 93, 95, 123, 256, 268 CIRs 159 composition 268 pickup ions 197 open flux 138 termination shock 197, 211 comets 2À4, 11 active longitude 25 ComptonÀGetting effect 156 active region 25 convection equation tilt 25 diffusion 204 activity cycle (see also solar cycle) 1À2, corona 1À2 11À12 streamers 48, 63, 105, 254 Advanced Composition Explorer see ACE temperature 42 Alfve´n waves 116, 140, 266 coronal hole 30, 42, 104, 254, 265 AMPTE (Active Magnetospheric Particle PCH (polar coronal hole) 104, 126, 128 Tracer Explorer) mission 43, 197, coronal mass ejections see CME 259 corotating interaction regions see CIR anisotropy telescopes (AT) 158 corotating rarefaction region see CRR Cosmic Ray and Solar Particle Bastille Day see flares Investigation (COSPIN) 152 bow shock 10 cosmic ray nuclear composition (CRNC) butterfly diagram 24À25 172 cosmic rays 2, 16, 22, 29, 34, 37, 195, 259 Cassini mission 181 anomalous 195 CELIAS see SOHO charge state 217 CH see coronal hole composition 196, 217 CHEM 43 convection–diffusion model 213 282 Index cosmic rays (cont.) Energetic Particle Composition Experiment drift 101, 225 (EPAC) 152 force-free approximation 213 energetic particle 268 galactic 195 anisotropy 156,
    [Show full text]
  • The ISEE-C Plasma Wave Investigation
    IEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICS, VOL. GE-16, NO. 3, JULY 1978 191 state of the interplanetary plasma," J. Geophys. Res., vol. 73, spectrometer for space plasmas," Rev. Sci. Instr., vol. 39, p. 441, p. 5485, 1968. 1968. [19] I. Iben, "The 37 Cl solar neutrino experiment and the solar helium [25] K. W. Ogilvie and J. Hirshberg, "The solar cycle variation of the abundance," Am. Phys., vol. 54, p. 164, 1969. solar wind helium abundance," J. Geophys. Res., vol. 79, p. 4959, of a Wien filter with 1974. [20] D. loanoviciu, "Ion optics inhomogeneous [26] D. E. Robbins, A. J. Hundhausen, and S. J. Bame, "Helium in the fields," Int. J. Mass Spectrom. Ion Phys., vol. I1, p. 169, 1973. solar wind," J. Geophys. Res., vol. 75, p. 1178, 1970. [21] C. Jordan, "The ionization equilibrium of elements between car- [27] E. G. Shelley, R. D. Sharp. R. G. Johnson, J. Geiss, P. Eberhardt, bon and nickel," Mon. Notic. Roy. Astron. Soc., vol. 142, p. 501, H. Balsiger, G. Haerendel, and H. Rosendauer, "Plasma Composi- 1969. tion Experiment on ISEE -A," this issue, pp. 266-270. [22] C. E. Kuyatt and J. A. Simpson, "Electron monochromator de- (28] E. G. Shelley, R. G. Johnson, and R. D. Sharp, "Satellite observa- sign," Rev. Sci. Instr., vol. 38, p. 103, 1967. tions of energetic heavy ions during a geomagnetic storm," J. [23] W. Legler, "Ein modifiziertes Wiensches Filter also Elektronen- Geophys. Res., vol. 77, p. 6104, 1972. monochromator," Z. Phys., vol. 171, p. 424, 1963. [29] R. V. Wagoner, "Big-Bang nucleosynthesis revisited," Astrophys.
    [Show full text]
  • Herschel Space Observatory-An ESA Facility for Far-Infrared And
    Astronomy & Astrophysics manuscript no. 14759glp c ESO 2018 October 22, 2018 Letter to the Editor Herschel Space Observatory? An ESA facility for far-infrared and submillimetre astronomy G.L. Pilbratt1;??, J.R. Riedinger2;???, T. Passvogel3, G. Crone3, D. Doyle3, U. Gageur3, A.M. Heras1, C. Jewell3, L. Metcalfe4, S. Ott2, and M. Schmidt5 1 ESA Research and Scientific Support Department, ESTEC/SRE-SA, Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands e-mail: [email protected] 2 ESA Science Operations Department, ESTEC/SRE-OA, Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands 3 ESA Scientific Projects Department, ESTEC/SRE-P, Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands 4 ESA Science Operations Department, ESAC/SRE-OA, P.O. Box 78, E-28691 Villanueva de la Canada,˜ Madrid, Spain 5 ESA Mission Operations Department, ESOC/OPS-OAH, Robert-Bosch-Strasse 5, D-64293 Darmstadt, Germany Received 9 April 2010; accepted 10 May 2010 ABSTRACT Herschel was launched on 14 May 2009, and is now an operational ESA space observatory offering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55−671 µm. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time.
    [Show full text]