Presence of Interstellar Dust Inside the Earth\'S Orbit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA Technical Memorandum 85094 SOLAR RADIO BURST AND IN SITU DETERMINATION OF INTERPLANETARY ELECTRON DENSITY (NASA-^'M-85094) SOLAR RADIO BUFST AND IN N83-35989 SITU DETERMINATION OF INTEFPIAKETARY ELECTRON DENSITY SNASA) 26 p EC A03/MF A01 CSCL 03B Unclas G3/9.3 492134 J. L. Bougeret, J. H. King and R. Schwenn OCT Y'183 RECEIVED NASA Sri FACIUTY ACCESS DEPT. September 1883 I 3 National Aeronautics and Space Administration Goddard Spne Flight Center Greenbelt, Maryland 20771 k it R ^ f A SOLAR RADIO BURST AND IN SITU DETERMINATION OF INTERPLANETARY ELECTRON DENSITY J.-L. Bou eret * J.H. Kinr ^i Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight. Center, Greenbelt, Maryland 20771, U.S.A. and R. Schwenn Max-Planck-Institut fOr Aeronomie, Postfach 20, D-3411 Katlenburg-Lindau, Federal Republic of Germany - 2 - °t i t: ABSTRACT i • We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974-1980 Helioi 1 and 2 in situ i i density observations made in the 0.3-1.0 AU range. -
Science Objectives May Be Summarized As Follows
MAGNETOSPHERE IMAGING INSTRUMENT (MIMI) 9 ON THE CASSINI MISSION TO SATURN/TITAN 2. Scientific Objectives MIMI science objectives may be summarized as follows: Saturn • Determine the global configuration and dynamics of hot plasma in the magneto- sphere of Saturn through energetic neutral particle imaging of ring current, radia- tion belts, and neutral clouds. • Study the sources of plasmas and energetic ions through in situ measurements of energetic ion composition, spectra, charge state, and angular distributions. • Search for, monitor, and analyze magnetospheric substorm-like activity at Saturn. • Determine through the imaging and composition studies the magnetosphere– satellite interactions at Saturn and understand the formation of clouds of neutral hydrogen, nitrogen, and water products. •Investigate the modification of satellite surfaces and atmospheres through plasma and radiation bombardment. • Study Titan’s cometary interaction with Saturn’s magnetosphere (and the solar wind) via high-resolution imaging and in situ ion and electron measurements. • Measure the high energy (Ee > 1 MeV, Ep > 15 MeV) particle component in the inner (L < 5 RS) magnetosphere to assess cosmic ray albedo neutron decay (CRAND) source characteristics. •Investigate the absorption of energetic ions and electrons by the satellites and rings in order to determine particle losses and diffusion processes within the mag- netosphere. • Study magnetosphere–ionosphere coupling through remote sensing of aurora and in situ measurements of precipitating energetic ions and electrons. Jupiter • Study ring current(s), plasma sheet, and neutral clouds in the magnetosphere and magnetotail of Jupiter during Cassini flyby, using global imaging and in situ mea- surements. S. M. KRIMIGIS ET AL. 10 Interplanetary • Determine elemental and isotopic composition of local interstellar medium through measurements of interstellar pickup ions. -
Radial Variation of the Interplanetary Magnetic Field Between 0.3 AU and 1.0 AU
|00000575|| J. Geophys. 42, 591 - 598, 1977 Journal of Geophysics Radial Variation of the Interplanetary Magnetic Field between 0.3 AU and 1.0 AU Observations by the Helios-I Spacecraft G. Musmann, F.M. Neubauer and E. Lammers Institut for Geophysik and Meteorologie, Technische Universitiit Braunschweig, Mendelssohnstr. lA, D-3300 Braunschweig, Federal Republic of Germany Abstract. We have investigated the radial dependence of the radial and azimuthal components and the magnitude of the interplanetary magnetic field obtained by the Technical University of Braunschweig magnetometer experiment on-board of Helios-1 from December 10, 1974 to first perihelion on March 15, 1975. Absolute values of daily averages of each quantity have been employed. The regression analysis based on power laws leads to 2.55 y x r- 2 · 0 , 2.26 y x r- i.o and F = 5.53 y x r- i. 6 with standard deviations of 2.5 y, 2.0 y and 3.2 y for the radial and azimuthal components and magnitude, respectively. Here r is the radial distance from the sun in astronomical units. The results are compared with results obtained for Mariners 4, 5 and 10 and Pioneers 6 and 10. The differences are probably due to different epochs in the solar cycle and the different statistical techniques used. Key words: Interplanetary magnetic field - Helios-1 results. Introduction The study of the vanat10n of the components and magnitude of the in terplanetary magnetic field with heliocentric distance is very intersting at the present time. The mission of Mariner 10 to the inner solar system to a heliocentric distance of 0.46 AU and the missions of Pioneer 10 and Pioneer 11 to the outer solar system to heliocentric distances beyond 5 AU have provided new data over a wide range of heliocentric distance. -
What Lies Immediately Outside of the Heliosphere in the Very Local Interstellar Medium (VLISM): What Will ISP Detect?
EPSC Abstracts Vol. 14, EPSC2020-68, 2020 https://doi.org/10.5194/epsc2020-68 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. What lies immediately outside of the heliosphere in the very local interstellar medium (VLISM): What will ISP detect? Jeffrey Linsky1 and Seth Redfield2 1University of Colorado, JILA, Boulder CO, United States of America ([email protected]) 2Wesleyan University, Astronomy Department, Middletown CT, United States of America ([email protected]) The Interstellar Probe (ISP) will provide the first direct measurements of interstellar gas and dust when it travels far beyond the heliopause where the solar wind no longer influences the ambient medium. We summarize in this presentation what we have been learning about the VLISM from 20 years of remote observations with the high-resolution spectrographs on the Hubble Space Telescope. Radial velocity measurements of interstellar absorption lines seen in the lines of sight to nearby stars allow us to measure the kinematics of gas flows in the VLISM. We find that the heliosphere is passing through a cluster of warm partially ionized interstellar clouds. The heliosphere is now at the edge of the Local Interstellar Cloud (LIC) and heading in the direction of the slighly cooler G cloud. Two other warm clouds (Blue and Aql) are very close to the heliosphere. We find that there is a large region of the sky with very low neutral hydrogen column density, which we call the hydrogen hole. In the direction of the hydrogen hole is the brightest photoionizing source, the star Epsilon Canis Majoris (CMa). -
Arxiv:Astro-Ph/9910429V1 22 Oct 1999 Hr Title: Short Chicag of University Astrophysics, and Astronomy of Department Frisch C
1 The galactic environment of the Sun Priscilla C. Frisch 1 Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois Short title: GALACTIC ENVIRONMENT OF THE SUN arXiv:astro-ph/9910429v1 22 Oct 1999 2 Abstract. The interstellar cloud surrounding the solar system regulates the galactic environment of the Sun and constrains the physical characteristics of the interplanetary medium. This paper compares interstellar dust grain properties observed within the solar system with dust properties inferred from observations of the cloud surrounding the solar system. Properties of diffuse clouds in the solar vicinity are discussed to gain insight into the properties of the diffuse cloud complex flowing past the Sun. Evidence is presented for changes in the galactic environment of the Sun within the next 104–106 years. The combined history of changes in the interstellar environment of the Sun, and solar activity cycles, will be recorded in the variability of the ratio of large- to medium-sized interstellar dust grains deposited onto geologically inert surfaces. Combining data from lunar core samples in the inner and outer solar system will assist in disentangling these two effects. 3 1. Introduction The interstellar cloud surrounding the solar system regulates the galactic environment of the Sun and constrains the physical characteristics of the interplanetary medium enveloping the planets. In addition, the daughter products of the interaction between the solar wind and the interstellar cloud surrounding the solar system, when compared with astronomical data, provide a unique window on the chemical evolution of our galactic neighborhood, reveal the fundamental processes that link the interplanetary environment to the galactic environment of the Sun, and constrain the history and physical properties of one sample of a diffuse interstellar cloud. -
Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71
Index abundances 164 CIR (corotating interaction region) 3, ACE (Advanced Composition Explorer) 1, 14À15, 32, 36À37, 47, 62, 108, 151, 21, 60, 71, 170À171, 173, 175, 177, 254À255 200, 251 energetic particles 63, 154 SWICS 43, 86 Climax neutron monitor 197 ACRs (anomalous cosmic rays) 10, 12, 197, CME (coronal mass ejection) 3, 14À15, 56, 258À259 64, 86, 93, 95, 123, 256, 268 CIRs 159 composition 268 pickup ions 197 open flux 138 termination shock 197, 211 comets 2À4, 11 active longitude 25 ComptonÀGetting effect 156 active region 25 convection equation tilt 25 diffusion 204 activity cycle (see also solar cycle) 1À2, corona 1À2 11À12 streamers 48, 63, 105, 254 Advanced Composition Explorer see ACE temperature 42 Alfve´n waves 116, 140, 266 coronal hole 30, 42, 104, 254, 265 AMPTE (Active Magnetospheric Particle PCH (polar coronal hole) 104, 126, 128 Tracer Explorer) mission 43, 197, coronal mass ejections see CME 259 corotating interaction regions see CIR anisotropy telescopes (AT) 158 corotating rarefaction region see CRR Cosmic Ray and Solar Particle Bastille Day see flares Investigation (COSPIN) 152 bow shock 10 cosmic ray nuclear composition (CRNC) butterfly diagram 24À25 172 cosmic rays 2, 16, 22, 29, 34, 37, 195, 259 Cassini mission 181 anomalous 195 CELIAS see SOHO charge state 217 CH see coronal hole composition 196, 217 CHEM 43 convection–diffusion model 213 282 Index cosmic rays (cont.) Energetic Particle Composition Experiment drift 101, 225 (EPAC) 152 force-free approximation 213 energetic particle 268 galactic 195 anisotropy 156, -
Solar Wind Charge Exchange Contributions to the Diffuse X-Ray Emission
Solar Wind Charge Exchange Contributions to the Diffuse X-Ray Emission T. E. Cravensa, I. P. Robertsona, S. Snowdenb, K. Kuntzc, M. Collierb and M. Medvedeva aDept. of Physics and Astronomy, Malott Hall, 1251 Wescoe Hall Dr., University of Kansas, Lawrence, KS 66045 USA bNASA Goddard Space Flight Center, Greenbelt, MD, 20771 USA cDept. of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218 USA Abstract: Astrophysical x-ray emission is typically associated with hot collisional plasmas, such as the million degree gas residing in the solar corona or in supernova remnants. However, x-rays can also be produced in cooler gas by charge exchange collisions between highly-charged ions and neutral atoms or molecules. This mechanism produces soft x-ray emission plasma when the solar wind interacts with neutral gas in the solar system. Examples of such x-ray sources include comets, the terrestrial magnetosheath, and the heliosphere (where the solar wind interacts with incoming interstellar neutral gas). Heliospheric emission is thought to make a significant contribution to the observed soft x-ray background (SXRB). This emission needs to be better understood so that it can be distinguished from the SXRB emission associated with hot interstellar gas and the galactic halo. Keywords: x-rays, charge exchange, local bubble, heliosphere, solar wind PACS: 95.85 Nv; 96.60 Vg; 96.50 Ci; 96.50 Zc INTRODUCTION A key diagnostic tool for hot astrophysical plasmas is x-ray emission [e.g., 1]. Hot plasmas produce x-rays collisionally, both in the continuum from free-free and bound- free (e.g., electron-ion recombination) transitions and as line emission from highly ionized species (bound-bound transitions). -
The ISEE-C Plasma Wave Investigation
IEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICS, VOL. GE-16, NO. 3, JULY 1978 191 state of the interplanetary plasma," J. Geophys. Res., vol. 73, spectrometer for space plasmas," Rev. Sci. Instr., vol. 39, p. 441, p. 5485, 1968. 1968. [19] I. Iben, "The 37 Cl solar neutrino experiment and the solar helium [25] K. W. Ogilvie and J. Hirshberg, "The solar cycle variation of the abundance," Am. Phys., vol. 54, p. 164, 1969. solar wind helium abundance," J. Geophys. Res., vol. 79, p. 4959, of a Wien filter with 1974. [20] D. loanoviciu, "Ion optics inhomogeneous [26] D. E. Robbins, A. J. Hundhausen, and S. J. Bame, "Helium in the fields," Int. J. Mass Spectrom. Ion Phys., vol. I1, p. 169, 1973. solar wind," J. Geophys. Res., vol. 75, p. 1178, 1970. [21] C. Jordan, "The ionization equilibrium of elements between car- [27] E. G. Shelley, R. D. Sharp. R. G. Johnson, J. Geiss, P. Eberhardt, bon and nickel," Mon. Notic. Roy. Astron. Soc., vol. 142, p. 501, H. Balsiger, G. Haerendel, and H. Rosendauer, "Plasma Composi- 1969. tion Experiment on ISEE -A," this issue, pp. 266-270. [22] C. E. Kuyatt and J. A. Simpson, "Electron monochromator de- (28] E. G. Shelley, R. G. Johnson, and R. D. Sharp, "Satellite observa- sign," Rev. Sci. Instr., vol. 38, p. 103, 1967. tions of energetic heavy ions during a geomagnetic storm," J. [23] W. Legler, "Ein modifiziertes Wiensches Filter also Elektronen- Geophys. Res., vol. 77, p. 6104, 1972. monochromator," Z. Phys., vol. 171, p. 424, 1963. [29] R. V. Wagoner, "Big-Bang nucleosynthesis revisited," Astrophys. -
Physical Properties of the Local Interstellar Medium
Space Sci Rev (2009) 143: 323–331 DOI 10.1007/s11214-008-9422-4 Physical Properties of the Local Interstellar Medium Seth Redfield Received: 3 April 2008 / Accepted: 23 July 2008 / Published online: 12 September 2008 © Springer Science+Business Media B.V. 2008 Abstract The observed properties of the local interstellar medium (LISM) have been facil- itated by a growing ultraviolet and optical database of high spectral resolution observations of interstellar absorption toward nearby stars. Such observations provide insight into the physical properties (e.g., temperature, turbulent velocity, and depletion onto dust grains) of the population of warm clouds (e.g., 7000 K) that reside within the Local Bubble. In particu- lar, I will focus on the dynamical properties of clouds within ∼15 pc of the Sun. This simple dynamical model addresses a wide range of issues, including, the location of the Sun as it pertains to the relationship between local interstellar clouds and the circumheliospheric in- terstellar medium (CHISM), the creation of small cold clouds inside the Local Bubble, and the association of interacting warm clouds and small-scale density fluctuations that cause interstellar scintillation. Local interstellar clouds that can be easily distinguished based on their dynamical properties also differentiate themselves by other physical properties. For example, the two nearest local clouds, the Local Interstellar Cloud (LIC) and the Galactic (G) Cloud, show distinct properties in temperature and depletion of iron and magnesium. The availability of large-scale observational surveys allows for studies of the global charac- teristics of our local interstellar environment, which will ultimately be necessary to address fundamental questions regarding the origins and evolution of the local interstellar medium. -
Helios: a Programmable Soware-Defined Solar Module
Helios: A Programmable Soware-defined Solar Module Noman Bashir David Irwin Prashant Shenoy UMass Amherst UMass Amherst UMass Amherst [email protected] [email protected] [email protected] ABSTRACT 1 INTRODUCTION e declining cost and rising penetration of solar energy is poised Due to its continuously declining cost, solar generation capacity to fundamentally impact grid operations, as utilities must con- is rapidly expanding, with the aggregate amount increasing 50% tinuously oset, potentially rapid and increasingly large, power worldwide in just the last year from 50GW to 76GW [16].e uctuations from highly distributed and “uncontrollable” solar sites increase is largely due to a steady drop in the cost of solar mod- to maintain the instantaneous balance between electricity’s supply ules, which decreased by 2 from 2009 to 2015 (from $8/W to ⇥ ⇠ and demand. Prior work proposes to address the problem by design- $4/W) [7]. Utilities and governments are responding to rising ⇠ ing various policies that actively control solar power to optimize solar penetration in multiple ways. Since solar is typically installed grid operations. However, these policies implicitly assume the pres- “behind the meter” and, similar to demand, viewed as uncontrollable, ence of “smart” solar modules capable of regulating solar output many utilities are altering their generation portfolio to include more based on various algorithms. Unfortunately, implementing such small “peaking” generators with fast start-up times and high ramp algorithms is currently not possible, as smart inverters embed only rates to beer compensate for large solar uctuations. Unfortu- a small number of operating modes and are not programmable. -
Abstract 1. Introduction
19 Proceedings of the Research Institute of Atmospherics, Nagoya University, vol.33(1986)-Research Report- AN INTERPLANETARY DISTURBANCE RELEVANT TO THE TALL-TURNING OF COMET BRADFIELD( 1979 L) ON 1980 FEBRUARY 6 Takashi Watanabe, Takakiyo Kakinuma, and Masayoshi Kojima Abstract Solar wind data obtained with spacecraft and IPS (interplanetary scintillation) observations in early February 1980 are examined in order to determine large-scale propagation properties of a proposed interplanetary disturbance relevant to a very rapid 10° turning of the plasma tail axis of comet Bradfield (19791) on 6 February 1980. It is shown that a solar-flare-associated interplanetary disturbance having an oblate configuration was responsible for the tail event. 1. Introduction Some optical characteristics of comets could be used to study the solar wind (e.g., Mendis and Ip, 1977; Brandt and Chapman, 1982; Mendis and Houpis, 1982; Ip, 1985). Fluctuations in the brightness of the heads of comets might be related to properties of the solar wind 20 (Miller, 1976). Dryer et al. (1976),for example, suggested that the interaction of interplanetary shock waves with cometary atmosphere may be a principal factor responsible for cometary brightness fluctuations. At present, however, the responses of individual comets to solar-interplanetary events are not well-calibrated enough to be used for study of the solar wind. The disconnection of the plasma tail from the cometary head could be related to a passage of a sector boundary of interplanetary magnetic field through the magnetic-line reconnection process (Niedner and Brandt, 1978, 1979; Niedner et al., 1981; Niedner, 1982). On the other hand, Ip and Mendis (1978) and Ip (1980) proposed that dynamic effects of a high-speed solar wind stream could equally cause large - scale perturbation in t h e cometary ionosphere and plasma tail. -
Interstellar Heliospheric Probe/Heliospheric Boundary Explorer Mission—A Mission to the Outermost Boundaries of the Solar System
Exp Astron (2009) 24:9–46 DOI 10.1007/s10686-008-9134-5 ORIGINAL ARTICLE Interstellar heliospheric probe/heliospheric boundary explorer mission—a mission to the outermost boundaries of the solar system Robert F. Wimmer-Schweingruber · Ralph McNutt · Nathan A. Schwadron · Priscilla C. Frisch · Mike Gruntman · Peter Wurz · Eino Valtonen · The IHP/HEX Team Received: 29 November 2007 / Accepted: 11 December 2008 / Published online: 10 March 2009 © Springer Science + Business Media B.V. 2009 Abstract The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current under- standing of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of The IHP/HEX Team. See list at end of paper. R. F. Wimmer-Schweingruber (B) Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 11, 24098 Kiel, Germany e-mail: [email protected] R. McNutt Applied Physics Laboratory, John’s Hopkins University, Laurel, MD, USA N. A. Schwadron Department of Astronomy, Boston University, Boston, MA, USA P. C. Frisch University of Chicago, Chicago, USA M. Gruntman University of Southern California, Los Angeles, USA P. Wurz Physikalisches Institut, University of Bern, Bern, Switzerland E. Valtonen University of Turku, Turku, Finland 10 Exp Astron (2009) 24:9–46 interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region.