Reintroduction of Freshwater Macroinvertebrates: Challenges and Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

Reintroduction of Freshwater Macroinvertebrates: Challenges and Opportunities Biol. Rev. (2019), 94, pp. 368–387. 368 doi: 10.1111/brv.12458 Reintroduction of freshwater macroinvertebrates: challenges and opportunities Jonas Jourdan1,∗ , Martin Plath2, Jonathan D. Tonkin3 , Maria Ceylan1, Arlena C. Dumeier4, Georg Gellert5, Wolfram Graf6, Charles P. Hawkins7, Ellen Kiel4, Armin W. Lorenz8, Christoph D. Matthaei9, Piet F. M. Verdonschot10,11, Ralf C. M. Verdonschot10 and Peter Haase1,12 1Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany 2Shaanxi Key Laboratory for Molecular Biology in Agriculture and College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, 712100 Shaanxi, China 3Department of Integrative Biology, Oregon State University, Corvallis, 3029 Cordley Hall, OR 97331, U.S.A. 4Department of Biology and Environmental Sciences – Aquatic Ecology and Nature Conservation, Carl von Ossietzky University of Oldenburg, Ammerl¨ander Heerstr. 114–118, 26129 Oldenburg, Germany 5Landesarbeitskreis Wasser, Bund f¨ur Umwelt und Naturschutz Deutschland Landesverband Nordrhein-Westfalen, Merowingerstr. 88, 40225 D¨usseldorf, Germany 6Institute of Hydrobiology and Aquatic Ecosystem Management, BOKU - University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria 7Department of Watershed Sciences, National Aquatic Monitoring Center, and Ecology Center, Utah State University, 5210 Old Main Hill, Logan, UT 84322-5210, U.S.A. 8Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universit¨atsstr. 5, 45141 Essen, Germany 9Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand 10Wageningen Environmental Research, Wageningen University and Research, Droevendaalsesteeg 3, 6700AA Wageningen, The Netherlands 11Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090GE Amsterdam, The Netherlands 12Faculty of Biology, University of Duisburg-Essen, Universit¨atsstr. 5, 45141 Essen, Germany ABSTRACT Species reintroductions – the translocation of individuals to areas in which a species has been extirpated with the aim of re-establishing a self-sustaining population – have become a widespread practice in conservation biology. Reintroduction projects have tended to focus on terrestrial vertebrates and, to a lesser extent, fishes. Much less effort has been devoted to the reintroduction of invertebrates into restored freshwater habitats. Yet, reintroductions may improve restoration outcomes in regions where impoverished regional species pools limit the self-recolonisation of restored freshwaters. We review the available literature on macroinvertebrate reintroductions, focusing on identifying the intrinsic and extrinsic factors that determine their success or failure. Our study reveals that freshwater macroinvertebrate reintroductions remain rare, are often published in the grey literature and, of the attempts made, approximately one-third fail. We identify life-cycle complexity and remaining stressors as the two factors most likely to affect reintroduction success, illustrating the unique challenges of freshwater macroinvertebrate reintroductions. Consideration of these factors by managers during the planning process and proper documentation – even if a project fails – may increase the likelihood of successful outcomes in future reintroduction attempts of freshwater macroinvertebrates. Key words: invertebrate reintroduction, conservation, translocation, species management, population restoration, restoring diversity. * Address for correspondence (Tel: +49 6051 61954 3125; E-mail: [email protected]) Biological Reviews 94 (2019) 368–387 © 2018 Cambridge Philosophical Society Reintroduction of freshwater macroinvertebrates 369 CONTENTS I. Introduction .............................................................................................. 369 II. Reviewing methods ...................................................................................... 370 III. Current status of freshwater macroinvertebrate reintroductions .......................................... 370 (1) Reintroduction of non-insect species ................................................................. 374 (2) Reintroduction of aquatic and semi-aquatic insects .................................................. 374 IV. Factors determining the success of reintroductions ....................................................... 375 (1) Intrinsic factors ....................................................................................... 375 (a) Effects of life cycles ................................................................................ 375 (b) Life-history differences ............................................................................ 377 (c) Standing genetic variation and evolvability ....................................................... 377 (d) Phenotypic plasticity .............................................................................. 377 (e) Signatures of local adaptation ..................................................................... 377 (f ) Behavioural deficiencies .......................................................................... 378 (2) Extrinsic factors ...................................................................................... 378 (a) Water quality ..................................................................................... 378 (b) Microhabitat availability .......................................................................... 378 (c) Timing of reintroduction ......................................................................... 378 (d) Competition, predation and facilitation ........................................................... 379 (e) Handling effects during release ................................................................... 379 V. Risks and opportunities of macroinvertebrate reintroductions ........................................... 379 (1) Translocation of pathogens and invasive species ..................................................... 379 (2) Significance of the evolutionary history of species and populations ................................... 380 (3) Opportunities ........................................................................................ 380 VI. Recommendations for practitioners ...................................................................... 381 (1) Planning the reintroduction .......................................................................... 381 (2) Selection of target species and populations ........................................................... 381 (3) Avoiding pathogen and parasite transmission ........................................................ 382 (4) Post-reintroduction monitoring ....................................................................... 382 VII. Conclusions .............................................................................................. 382 VIII. Acknowledgements ....................................................................................... 382 IX. References ................................................................................................ 383 I. INTRODUCTION functional traits (Palmer, Ambrose & Poff, 1997). Although subsequent evaluations often confirm an improvement in Humans have profoundly altered freshwater ecosystems physico-chemical conditions and macro-scale morphological by overexploitation, habitat degradation, and pollution, habitat quality (Palmer et al., 2010), these improvements all of which have contributed to the decline of native have rarely achieved the desired outcome for the aquatic biodiversity (Allan & Flecker, 1993; Dudgeon et al., 2006). community (Palmer et al., 2010; Haase et al., 2013). Benthic In recent decades, there has been increasing emphasis macroinvertebrates, in particular, often show no substantial on the restoration of freshwater ecosystems worldwide increase in population densities, species richness or trait (Palmer, Menninger & Bernhardt, 2010; Haase et al., 2013; diversity in response to restoration activities (Palmer et al., Palmer, Hondula & Koch, 2014). Broad policy initiatives 2010; Louhi et al., 2011; Pilotto et al., in press). aiming at protecting aquatic life (e.g. the Water Framework Multiple factors may inhibit macroinvertebrate recoloni- Directive 2000/60/EC in Europe, or the Clean Water Act in sation following restoration, including deficiencies in water the USA) have resulted in the widespread implementation quality (Kail, Arle & Jahnig,¨ 2012) associated with catchment of restoration with substantial financial costs (Bernhardt land use (Harding et al., 1998). In cases where water quality is et al., 2005). Often, projects have focused on restoring good and the aquatic habitat attains a pre-disturbance state, hydromorphological and physico-chemical properties of dispersal and metapopulation dynamics play a significant freshwater habitats [e.g. hydromorphological conditions role in determining recolonisation success (Clarke et al., 2008; (Bernhardt et al., 2005), chemical pollutants (Skjelkvale˚ et al., Tonkin et al., 2014; Li et al., 2016). Freshwater macroinverte- 2005)] or hydrological regimes of wetlands (Zedler, 2000), brates use a variety of active (e.g. upstream movement, aerial driven by the assumption that habitat improvement will dispersal) and passive (e.g. downstream drift, bird-mediated lead to a corresponding
Recommended publications
  • Butterflies and Moths (Insecta: Lepidoptera) of the Lokrum Island, Southern Dalmatia
    NAT. CROAT. VOL. 29 Suppl.No 2 1227-24051-57 ZAGREB DecemberMarch 31, 31, 2021 2020 original scientific paper / izvorni znanstveni rad DOI 10.20302/NC.2020.29.29 BUTTERFLIES AND MOTHS (INSECTA: LEPIDOPTERA) OF THE LOKRUM ISLAND, SOUTHERN DALMATIA Toni Koren Association Hyla, Lipovac I 7, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Koren, T.: Butterflies and moths (Insecta: Lepidoptera) of the Lokrum island, southern Dalmatia. Nat. Croat., Vol. 29, No. 2, 227-240, 2020, Zagreb. In 2016 and 2017 a survey of the butterflies and moth fauna of the island of Lokrum, Dubrovnik was carried out. A total of 208 species were recorded, which, together with 15 species from the literature, raised the total number of known species to 223. The results of our survey can be used as a baseline for the study of future changes in the Lepidoptera composition on the island. In comparison with the lit- erature records, eight butterfly species can be regarded as extinct from the island. The most probable reason for extinction is the degradation of the grassland habitats due to the natural succession as well as the introduction of the European Rabbit and Indian Peafowl. Their presence has probably had a tremendously detrimental effect on the native flora and fauna of the island. To conserve the Lepidop- tera fauna of the island, and the still remaining biodiversity, immediate eradication of these introduced species is needed. Key words: Croatia, Adriatic islands, Elafiti, invasive species, distribution Koren, T.: Danji i noćni leptiri (Insecta: Lepidoptera) otoka Lokruma, južna Dalmacija. Nat. Croat., Vol.
    [Show full text]
  • Actual Problems of Protection and Sustainable Use of the Animal World Diversity
    ACADEMY OF SCIENCES OF MOLDOVA DEPARTMENT OF NATURE AND LIFE SCIENCES INSTITUTE OF ZOOLOGY Actual problems of protection and sustainable use of ThE animal world diversity International Conference of Zoologists dedicated to the 50th anniversary from the foundation of Institute of Zoology of ASM Chisinau – 2011 ACTUAL PRObLEMS OF PROTECTION AND SUSTAINAbLE USE OF ThE ANIMAL wORLD DIVERSITY Content CZU 59/599:502.74 (082) D 53 Dumitru Murariu. READING ABOUT SPECIES CONCEPT IN BIOLOGY.......................................................................10 Dan Munteanu. AChievements Of Romania in ThE field Of nature The materials of International Conference of Zoologists „Actual problems of protection and protection and implementation Of European Union’S rules concerning ThE biodiversity conservation (1990-2010)...............................................................................11 sustainable use of animal world diversity” organized by the Institute of Zoology of the Aca- demy of Sciences of Moldova in celebration of the 50th anniversary of its foundation are a gene- Laszlo Varadi. ThE protection and sustainable use Of Aquatic resources.....................................13 ralization of the latest scientific researches in the country and abroad concerning the diversity of aquatic and terrestrial animal communities, molecular-genetic methods in systematics, phylo- Terrestrial Vertebrates.................................................................................................................................................15
    [Show full text]
  • Moths at Kadoorie Farm 1994-2004
    Fauna Department Kadoorie Farm and Botanic Garden Lam Kam Road Tai Po, N.T. Phone 24886192 Hong Kong Fax 24831877 Fauna Conservation Department Project Report Monday, 30th May 2004 Project Area: Conservation (Species & Habitats); Wildlife Monitoring Project title: Moth Survey Code: FAU206 Coordinator: R.C. Kendrick Ph.D. Report period: 1994 to March 2004 Fauna Department Kadoorie Farm and Botanic Garden Lam Kam Road Tai Po, N.T. Phone 24886192 Hong Kong Fax 24831877 Summary Moth Survey Report 1994 to March 2004 at Kadoorie Farm & Botanic Garden Tai Po, Hong Kong. by R.C. Kendrick Ph.D. Report No. KFBG-FAU206/1 May 2004 Project Area: Conservation (Species & Habitats); Wildlife Monitoring Project title: Moth Survey Coordinator: Roger Kendrick Ph.D 1 CODE: FAU 206 Date commenced: February 2001 1 P/T Senior Conservation Officer, Fauna Conservation Department, Kadoorie Farm & Botanic Garden Corporation KFBG Moth Report 1994-2004 R.C.Kendrick, Fauna Conservation Contents 1 ABSTRACT 3 2 INTRODUCTION 4 3 OBJECTIVES 4 4 METHODS 5 4.1 SPECIES RICHNESS & DIVERSITY AT KFBG 5 4.2 SPECIES OF CONSERVATION IMPORTANCE 5 5 RESULTS 6 5.1 SPECIES RICHNESS & DIVERSITY AT KFBG 8 5.2 SPECIES OF CONSERVATION IMPORTANCE 12 6 DISCUSSION 18 7 CONCLUSIONS 19 8 REFERENCES 19 9 APPENDIX 21 9.1 SPECIES LIST 21 9.2 RAW DATA 28 1 ABSTRACT A brief history of moth recording at Kadoorie Farm & Botanic Garden is presented. Data from light trapping between 1994 and March 2004 is given. KFBG was found to have a high diversity and high species richness of moths.
    [Show full text]
  • Reintroduction of Freshwater Macroinvertebrates: Challenges and Opportunities
    Biol. Rev. (2018), pp. 000–000. 1 doi: 10.1111/brv.12458 Reintroduction of freshwater macroinvertebrates: challenges and opportunities Jonas Jourdan1,∗ , Martin Plath2, Jonathan D. Tonkin3 , Maria Ceylan1, Arlena C. Dumeier4, Georg Gellert5, Wolfram Graf6, Charles P. Hawkins7, Ellen Kiel4, Armin W. Lorenz8, Christoph D. Matthaei9, Piet F. M. Verdonschot10,11, Ralf C. M. Verdonschot10 and Peter Haase1,12 1Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany 2Shaanxi Key Laboratory for Molecular Biology in Agriculture and College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, 712100 Shaanxi, China 3Department of Integrative Biology, Oregon State University, Corvallis, 3029 Cordley Hall, OR 97331, U.S.A. 4Department of Biology and Environmental Sciences – Aquatic Ecology and Nature Conservation, Carl von Ossietzky University of Oldenburg, Ammerl¨ander Heerstr. 114–118, 26129 Oldenburg, Germany 5Landesarbeitskreis Wasser, Bund f¨ur Umwelt und Naturschutz Deutschland Landesverband Nordrhein-Westfalen, Merowingerstr. 88, 40225 D¨usseldorf, Germany 6Institute of Hydrobiology and Aquatic Ecosystem Management, BOKU - University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria 7Department of Watershed Sciences, National Aquatic Monitoring Center, and Ecology Center, Utah State University, 5210 Old Main Hill, Logan, UT 84322-5210, U.S.A. 8Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universit¨atsstr. 5, 45141 Essen, Germany 9Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand 10Wageningen Environmental Research, Wageningen University and Research, Droevendaalsesteeg 3, 6700AA Wageningen, The Netherlands 11Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090GE Amsterdam, The Netherlands 12Faculty of Biology, University of Duisburg-Essen, Universit¨atsstr.
    [Show full text]
  • Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences Within the Hypnum Cupressiforme Hedw
    plants Article Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences within the Hypnum cupressiforme Hedw. Species Complex Petr Pyszko 1,*, Michaela Drgová 1, Stanislav Ožana 1, OndˇrejDor ˇnák 1, David Rožek 2, Daniel Lee Cˇ íp 2, VítˇezslavPlášek 1 and Pavel Drozd 1 1 Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; [email protected] (M.D.); [email protected] (S.O.); [email protected] (O.D.); [email protected] (V.P.); [email protected] (P.D.) 2 Heyrovsky High School of Chemistry, Stˇredoškolská 2854/1, 700 30 Ostrava, Czech Republic; [email protected] (D.R.); [email protected] (D.L.C.)ˇ * Correspondence: [email protected]; Tel.: +420-608-546-079 Abstract: Intrataxonomic differences in terms of angiosperm suitability for herbivorous insects stem from variables such as plant structure, palatability, and chemistry. It has not yet been elucidated whether these differences also occur in terms of the bryophyte’s suitability to bryophages. Hypnum cupressiforme Hedw. is a morphologically variable moss species frequently inhabited or fed by insects. In this investigation, we offered five morphotypes of H. cupressiforme to two bryophagous species of Citation: Pyszko, P.; Drgová, M.; Byrrhidae (Coleoptera) to reveal whether the intrataxonomic variability affects beetles’ preferences. Ožana, S.; Dorˇnák,O.; Rožek, D.; Lee The morphotypes were offered with preserved and removed spatial structures. There were no Cíp,ˇ D.; Plášek, V.; Drozd, P. Could significant differences in morphotype preferences when spatial structures were preserved, although Bryophagous Beetles (Coleoptera: flat usual turgid Byrrhidae) Help Us Understand during the daytime, the beetles moved from the morphotype to the and morphotypes.
    [Show full text]
  • Effect of Mixed Gmelina and Moringa Leaf Meal Inclusion and Sampling Periods On
    Preface We would like to present, with great pleasure, the inaugural volume-7, Issue-8, August 2021, of a scholarly journal, International Journal of Environmental & Agriculture Research. This journal is part of the AD Publications series in the field of Environmental & Agriculture Research Development, and is devoted to the gamut of Environmental & Agriculture issues, from theoretical aspects to application-dependent studies and the validation of emerging technologies. This journal was envisioned and founded to represent the growing needs of Environmental & Agriculture as an emerging and increasingly vital field, now widely recognized as an integral part of scientific and technical investigations. Its mission is to become a voice of the Environmental & Agriculture community, addressing researchers and practitioners in below areas. Environmental Research: Environmental science and regulation, Ecotoxicology, Environmental health issues, Atmosphere and climate, Terrestric ecosystems, Aquatic ecosystems, Energy and environment, Marine research, Biodiversity, Pharmaceuticals in the environment, Genetically modified organisms, Biotechnology, Risk assessment, Environment society, Agricultural engineering, Animal science, Agronomy, including plant science, theoretical production ecology, horticulture, plant, breeding, plant fertilization, soil science and all field related to Environmental Research. Agriculture Research: Agriculture, Biological engineering, including genetic engineering, microbiology, Environmental impacts of agriculture, forestry,
    [Show full text]
  • Winners and Losers Over 35 Years of Dragonfly and Damselfly Distributional Change
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.234104; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany Bowler, D.E1-3, Eichenberg, D.1, Conze, K.J.4, Suhling, F.5, Baumann, K.6, Bönsel, A.7, Bittner, T.8, Drews, A.9, Günther, A.10, Isaac, N.J.B.11, Petzold, F.12, Seyring, M.13, Spengler, T.6, Trockur, B.14, Willigalla, C.15, Bruelheide, H.16,1, Jansen, F.17, Bonn, A.1-3 Affiliations 1 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany 2 Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Str. 159, 07743 Jena, Germany 3 Helmholtz-Center for Environmental Research - UFZ, Department Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany 4 GdO (Gesellschaft deutschsprachiger Odonatologen), Hamburger Straße 92, 45145 Essen 5 Technische Universität Braunschweig, Institute of Geoecology, Department for Landscape Ecology and Environmental Systems Analysis, Langer Kamp 19c, 38106 Braunschweig 6 Arbeitsgemeinschaft Libellen in Niedersachsen und Bremen, kathrin.baumann@ag-libellen- nds-hb.de, [email protected] 7 Planung für alternative Umwelt GmbH, Vasenbusch 3, 18337 Gresenhorst, Germany 8 Landesanstalt für Umwelt Baden-Württemberg, Griesbachstr. 1, 76185 Karlsruhe, Germany 9 Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, Hamburger Chaussee 25, 24220 Flintbek, Germany 10 Naturschutzinstitut Freiberg, B.-Kellermann-Str.
    [Show full text]
  • Hong Kong Fauna Checklist CONTENTS
    香香 港港 動動 物物 選選 擇擇 性性 分分 類類 單單 元元 名名 錄錄 HHOONNGG KKOONNGG F A U N A F A U N A A CHECKLIST OF SELECTED TAXA 香香 港港 動動 物物 選選擇擇性性分分類類單單元元名名錄錄 HHOONNGG KKOONNGG FFAAUUNNAA A CHECKLIST OF SELECTED TAXA {蜻蜓, 蝴蝶, 飛蛾, 飄蟲 & 隱翅蟲, 竹節蟲, 淡水魚類, 兩棲類, 爬行類, 鳥類 及 哺乳類} (including Dragonflies, Butterflies, Moths, Ladybird & Rove Beetles, Stick Insects, Freshwater Fish, Amphibians, Reptiles, Birds and Mammals) 艾加里, 甘狄克 編 Edited by Dr. Gary W.J. Ades & Dr. Roger C. Kendrick 本名錄由嘉道理農場暨植物園職員提 The checklist has been compiled from available published and unpublished 供,包括已發表及末經發表的資料。所 sources by staff at Kadoorie Farm & Botanic Garden, and should be used 載資料祇供各界作教育及參考之用。本 for education and reference purposes 名錄將不斷更新,以加載香港特別行政 only. The list will be occasionally updated to include any new species 區新發現的物種名稱。 discovered in the Hong Kong SAR. 艾加里 博士 二零零四年一月 Dr Gary W.J. Ades January 2004 第二版 二零零四年三月 Second Edition: March 2004 Internet edition, with corrections, November 2004 修改後的網上版本, 二零零四年十一月 Produced by 製作 Fauna Conservation Department, Kadoorie Farm & Botanic Garden Corporation 嘉 道 理 農 場 暨 植 物 園, 動物保育部 Photo Credits Front Cover 盧 文 氏 樹 蛙 Romer’s Tree Frog, Philautus romeri. Cheung Y. Back Cover 1. Hong Kong Paradise Fish, Macropodus hongkongensis. P.A. Crow. 2. 班 腿 樹 蛙 Brown Tree Frog, Polypedates megacephalus: R.C. Kendrick. 3. larva of Acherontia lachesis. G.W.J. Ades. 4. Trithemis aurora. R.C. Kendrick. 5. 扁 顱 蝠 Lesser Bamboo Bat, Tylonycteris pachypus. P.A. Crow. 6. Sympis rufibasis. R.C. Kendrick. 7.
    [Show full text]
  • Complete Issue
    Preface We would like to present, with great pleasure, the inaugural volume-7, Issue-5, May 2021, of a scholarly journal, International Journal of Environmental & Agriculture Research. This journal is part of the AD Publications series in the field of Environmental & Agriculture Research Development, and is devoted to the gamut of Environmental & Agriculture issues, from theoretical aspects to application-dependent studies and the validation of emerging technologies. This journal was envisioned and founded to represent the growing needs of Environmental & Agriculture as an emerging and increasingly vital field, now widely recognized as an integral part of scientific and technical investigations. Its mission is to become a voice of the Environmental & Agriculture community, addressing researchers and practitioners in below areas. Environmental Research: Environmental science and regulation, Ecotoxicology, Environmental health issues, Atmosphere and climate, Terrestric ecosystems, Aquatic ecosystems, Energy and environment, Marine research, Biodiversity, Pharmaceuticals in the environment, Genetically modified organisms, Biotechnology, Risk assessment, Environment society, Agricultural engineering, Animal science, Agronomy, including plant science, theoretical production ecology, horticulture, plant, breeding, plant fertilization, soil science and all field related to Environmental Research. Agriculture Research: Agriculture, Biological engineering, including genetic engineering, microbiology, Environmental impacts of agriculture, forestry,
    [Show full text]