Plant Flavonoids As Potential Source of Future Antimalarial Leads
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,*
Chemodiversity of Exudate Flavonoids in Seven Tribes of Cichorioideae and Asteroideae (Asteraceae)§ Karin M.Valant-Vetscheraa and Eckhard Wollenweberb,* a Department of Plant Systematics and Evolution Ð Comparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Wien, Austria b Institut für Botanik der TU Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 62c, 155Ð163 (2007); received October 26/November 24, 2006 Members of several genera of Asteraceae, belonging to the tribes Mutisieae, Cardueae, Lactuceae (all subfamily Cichorioideae), and of Astereae, Senecioneae, Helenieae and Helian- theae (all subfamily Asteroideae) have been analyzed for chemodiversity of their exudate flavonoid profiles. The majority of structures found were flavones and flavonols, sometimes with 6- and/or 8-substitution, and with a varying degree of oxidation and methylation. Flava- nones were observed in exudates of some genera, and, in some cases, also flavonol- and flavone glycosides were detected. This was mostly the case when exudates were poor both in yield and chemical complexity. Structurally diverse profiles are found particularly within Astereae and Heliantheae. The tribes in the subfamily Cichorioideae exhibited less complex flavonoid profiles. Current results are compared to literature data, and botanical information is included on the studied taxa. Key words: Asteraceae, Exudates, Flavonoids Introduction comparison of accumulation trends in terms of The family of Asteraceae is distributed world- substitution patterns is more indicative for che- wide and comprises 17 tribes, of which Mutisieae, modiversity than single compounds. Cardueae, Lactuceae, Vernonieae, Liabeae, and Earlier, we have shown that some accumulation Arctoteae are grouped within subfamily Cichori- tendencies apparently exist in single tribes (Wol- oideae, whereas Inuleae, Plucheae, Gnaphalieae, lenweber and Valant-Vetschera, 1996). -
Flavonoids from Artemisia Annua L. As Antioxidants and Their Potential Synergism with Artemisinin Against Malaria and Cancer
Molecules 2010, 15, 3135-3170; doi:10.3390/molecules15053135 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer 1, 2 3 4 Jorge F.S. Ferreira *, Devanand L. Luthria , Tomikazu Sasaki and Arne Heyerick 1 USDA-ARS, Appalachian Farming Systems Research Center, 1224 Airport Rd., Beaver, WV 25813, USA 2 USDA-ARS, Food Composition and Methods Development Lab, 10300 Baltimore Ave,. Bldg 161 BARC-East, Beltsville, MD 20705-2350, USA; E-Mail: [email protected] (D.L.L.) 3 Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA; E-Mail: [email protected] (T.S.) 4 Laboratory of Pharmacognosy and Phytochemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium; E-Mail: [email protected] (A.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 26 January 2010; in revised form: 8 April 2010 / Accepted: 19 April 2010 / Published: 29 April 2010 Abstract: Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties. -
WO 2018/002916 Al O
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL). -
Investigation of the in Vitro Bioavailability of Luteolin from Modified Preparations of Artemisia Afra
Investigation of the in vitro bioavailability of luteolin from modified preparations of Artemisia afra Anjong Nkengla A thesis submitted in fulfilment of the requirements for the degree of Magister Scientiae (Pharmaceutical Sciences) in the Discipline of Pharmacology at the University of the Western Cape, Bellville, South Africa. Supervisor: Prof. James A. Syce December 2014 Investigation of the in vitro bioavailability of luteolin from modified preparations of Artemisia afra Anjong Nkengla Key words Artemisia afra Flavonoid Luteolin Permeability Freeze dried Alginate Polymethylmethacrylate Single pass intestinal perfusion HPLC ii Summary Artemisia afra (A. afra) is traditionally used for a variety of ailments and contain flavonoids e.g. luteolin which may contribute to some of its activity. It is generally administered as a tea or decoction, and such liquid dosage forms present challenges as far as long term storage and stability are concerned, as well as sub-optimal oral bioavailability of actives they contain. Freeze dried aqueous extracts (FDAE) can alleviate such problems but may be hygroscopic and unstable. The use of modified forms of FDAE can counter the problem of hygroscopicity (e.g. use of alginate) and alleviate the issue of sub-optimal bioavailability of plant actives (e.g. polymethylmethacrylate). The objectives of this study, were to: (1) prepare the freeze dried aqueous extract (FDAE) and modified forms, which include alginate-extract beads (alginate-FDAE) and polymethylmethacrylate coated alginate matrix beads of herbal extract (PMMA-alginate-FDAE) of the FDAE of A. afra, (2) determine and compare the pharmaceutical characteristics of the above mentioned preparations of A. afra,(3) quantify and compare the total flavonoid and specifically luteolin levels of the different forms of A. -
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tuberculosis Chemical Activity Count (+)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (+)-8HYDROXYCALAMENENE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 3 (+)-AROMOLINE 1 (+)-CASSYTHICINE 1 (+)-CATECHIN 10 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CEPHARANTHINE 1 (+)-CYANIDANOL-3 1 (+)-EPIPINORESINOL 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 2 (+)-GALLOCATECHIN 3 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 2 (+)-T-CADINOL 1 (+)-VESTITONE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-3-HYDROXY-9-METHOXYPTEROCARPAN 1 (-)-ACANTHOCARPAN 1 (-)-ALPHA-BISABOLOL 2 (-)-ALPHA-HYDRASTINE 1 Chemical Activity Count (-)-APIOCARPIN 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANESCACARPIN 1 (-)-CENTROLOBINE 1 (-)-CLANDESTACARPIN 1 (-)-CRISTACARPIN 1 (-)-DEMETHYLMEDICARPIN 1 (-)-DICENTRINE 1 (-)-DOLICHIN-A 1 (-)-DOLICHIN-B 1 (-)-EPIAFZELECHIN 2 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 2 (-)-EPICATECHIN-GALLATE 1 (-)-EPIGALLOCATECHIN 4 (-)-EPIGALLOCATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 9 (-)-EUDESMIN 1 (-)-GLYCEOCARPIN 1 (-)-GLYCEOFURAN 1 (-)-GLYCEOLLIN-I 1 (-)-GLYCEOLLIN-II 1 2 Chemical Activity Count (-)-GLYCEOLLIN-III 1 (-)-GLYCEOLLIN-IV 1 (-)-GLYCINOL 1 (-)-HYDROXYJASMONIC-ACID 1 (-)-ISOSATIVAN 1 (-)-JASMONIC-ACID 1 (-)-KAUR-16-EN-19-OIC-ACID 1 (-)-MEDICARPIN 1 (-)-VESTITOL 1 (-)-VESTITONE 1 -
Safety Assessment of Chamomilla Recutita-Derived Ingredients As Used in Cosmetics
PINK Safety Assessment of Chamomilla Recutita-Derived Ingredients as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: August 16, 2013 Panel Date: September 9-10, 2013 The 2013 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Ronald A Hill, Ph.D. James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst and Bart Heldreth, Ph.D., Chemist. © Cosmetic Ingredient Review 1101 17TH STREET, NW, SUITE 412 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ CIRINFO@CIR- SAFETY.ORG Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst Date: August 16, 2013 Subject: Draft Tentative Report on the Chamomilla Recutita-Derived Ingredients At the June 10-11, 2013 CIR Expert Panel meeting, the Panel determined that the available data are insufficient for evaluating the safety of the Chamomilla recutita-derived ingredients in cosmetic products and that the following data are needed: Skin irritation and sensitization data on chamomilla recutita (matricaria) flower extract at a use concentration of 10%. As noted in the data listed below, human skin irritation and sensitization data on products containing 0.3% and 0.2% chamomilla recutita (matricaria) flower extract, respectively, were received. -
In Silico, in Vitro and in Vivo Memory Enhancing Activity
IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM-INDUCED LEARNING IMPAIRMENT IN MICE Thesis submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai for the award of the degree of DOCTOR OF PHILOSOPHY in PHARMACY Submitted by A. MADESWARAN, M. Pharm., Under the guidance of Dr. K. ASOK KUMAR, M. Pharm., Ph.D. College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore – 641 044, Tamil Nadu, India. JUNE 2017 Certificate This is to certify that the Ph.D. dissertation entitled “IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM- INDUCED LEARNING IMPAIRMENT IN MICE” being submitted to The Tamil Nadu Dr. M.G.R. Medical University, Chennai, for the award of degree of DOCTOR OF PHILOSOPHY in the FACULTY OF PHARMACY was carried out by Mr. A. MADESWARAN, in College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, under my direct supervision and guidance to my fullest satisfaction. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma. Dr. K. Asok Kumar, M.Pharm., Ph.D. Professor & Head, Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, Tamil Nadu - 641 044. Place: Coimbatore – 44. Date: Certificate This is to certify that the Ph.D. dissertation entitled “IN SILICO, IN VITRO AND IN VIVO MEMORY ENHANCING ACTIVITY OF CERTAIN COMMERCIALLY AVAILABLE FLAVONOIDS IN SCOPOLAMINE AND ALUMINIUM- INDUCED LEARNING IMPAIRMENT IN MICE” being submitted to The Tamil Nadu Dr. -
Molecules 2010, 15, 3135-3170; Doi:10.3390/Molecules15053135
Molecules 2010, 15, 3135-3170; doi:10.3390/molecules15053135 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer 1, 2 3 4 Jorge F.S. Ferreira *, Devanand L. Luthria , Tomikazu Sasaki and Arne Heyerick 1 USDA-ARS, Appalachian Farming Systems Research Center, 1224 Airport Rd., Beaver, WV 25813, USA 2 USDA-ARS, Food Composition and Methods Development Lab, 10300 Baltimore Ave,. Bldg 161 BARC-East, Beltsville, MD 20705-2350, USA; E-Mail: [email protected] (D.L.L.) 3 Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA; E-Mail: [email protected] (T.S.) 4 Laboratory of Pharmacognosy and Phytochemistry, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium; E-Mail: [email protected] (A.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 26 January 2010; in revised form: 8 April 2010 / Accepted: 19 April 2010 / Published: 29 April 2010 Abstract: Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties. -
Stevia Genus: Phytochemistry and Biological Activities Update
molecules Review Stevia Genus: Phytochemistry and Biological Activities Update Jimena Borgo 1,2,3, Laura C. Laurella 1,2, Florencia Martini 1,3, Cesar A. N. Catalán 4 and Valeria P. Sülsen 1,2,3,* 1 Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; [email protected] (J.B.); [email protected] (L.C.L.); fl[email protected] (F.M.) 2 Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina 3 Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina 4 Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina; [email protected] * Correspondence: [email protected] Abstract: The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the Citation: Borgo, J.; Laurella, L.C.; extracts and isolated compounds. -
Artemisia Annua
Project number: PZW-AAF4 Post-harvest Storage Stability of Artemisinin and Flavonoids in Artemisia annua A Major Qualifying Project Report: Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by _________________________ _________________________ Meredith Ghilardi Jason Purnell Date: Approved: ________________________ Prof. Pamela J. Weathers, Major Advisor Acknowledgements We would like to thank Dr. Pamela Weathers for support and guidance for this project. We would also like to thank Dr. Melissa Towler for all of her help and guidance in the lab. We would like to thank the graduate students Sibo Wang and Liwen Fei for their help in the lab. 1 Contents Acknowledgements ..................................................................................................................... 1 Abstract ....................................................................................................................................... 3 A. The Problem and Its Significance. ....................................................................................... 4 A.1.Artemisinin Biosynthesis. ................................................................................................. 9 A.2.Microbial Synthesis of Artemisinin. ............................................................................... 12 A.3. Peroxidases and Relationship to Artemisinin. ............................................................... 12 A.4. Catalase and its Relation -
-
Exploring Artemisia Annua L., Artemisinin and Its Derivatives, from Traditional Chinese Wonder Medicinal Science
Shahrajabian MH et al . (2020) Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):1719-1741 DOI:10.15835/nbha48412002 Notulae Botanicae Horti AcademicPres Re view Article Agrobotanici Cluj-Napoca Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science Mohamad H. SHAHRAJABIAN 1a , Wenli SUN 1b , Qi CHENG 1,2 * 1Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China; [email protected] ; [email protected] 2Hebei Agricultural University, College of Life Sciences, Baoding, Global Alliance of HeBAU-CLS&HeQiS for BioAl- Manufacturing, Baoding, Hebei 071000, China; [email protected] (*corresponding author) a,b These authors contributed equally to the work Abstract Artemisia annua L. (Chinese wormwood herb, Asteraceae) synthesizes artemisinin, which is known as qinghaosu, considers as a unique sesquiterpene endoperoxide lactone. In traditional Chinese medicine, it has been used for the treatment of fevers and haemorrhoides. More researches on Artemisia annua L. and its derivatives, especially artemisinin and other metabolites will help to increase the knowledge and value of A. annua and its constituents. Phenolics from Artemisia annua consists of coumarins, flavones, flavonols, phenolic acids, and miscellaneous. Artemisinin has attracted much attention from scientists due to its potent antimalarial properties as secondary metabolites. Moreover, more attentions are focusing on the roles of artemisinin and its derivatives in treating obesity