Maximum Likelihood Estimation ∗ Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Inference in Generalized Linear Models Via Expected Log-Likelihoods
Fast inference in generalized linear models via expected log-likelihoods Alexandro D. Ramirez 1,*, Liam Paninski 2 1 Weill Cornell Medical College, NY. NY, U.S.A * [email protected] 2 Columbia University Department of Statistics, Center for Theoretical Neuroscience, Grossman Center for the Statistics of Mind, Kavli Institute for Brain Science, NY. NY, U.S.A Abstract Generalized linear models play an essential role in a wide variety of statistical applications. This paper discusses an approximation of the likelihood in these models that can greatly facilitate compu- tation. The basic idea is to replace a sum that appears in the exact log-likelihood by an expectation over the model covariates; the resulting \expected log-likelihood" can in many cases be computed sig- nificantly faster than the exact log-likelihood. In many neuroscience experiments the distribution over model covariates is controlled by the experimenter and the expected log-likelihood approximation be- comes particularly useful; for example, estimators based on maximizing this expected log-likelihood (or a penalized version thereof) can often be obtained with orders of magnitude computational savings com- pared to the exact maximum likelihood estimators. A risk analysis establishes that these maximum EL estimators often come with little cost in accuracy (and in some cases even improved accuracy) compared to standard maximum likelihood estimates. Finally, we find that these methods can significantly de- crease the computation time of marginal likelihood calculations for model selection and of Markov chain Monte Carlo methods for sampling from the posterior parameter distribution. We illustrate our results by applying these methods to a computationally-challenging dataset of neural spike trains obtained via large-scale multi-electrode recordings in the primate retina. -
The Gompertz Distribution and Maximum Likelihood Estimation of Its Parameters - a Revision
Max-Planck-Institut für demografi sche Forschung Max Planck Institute for Demographic Research Konrad-Zuse-Strasse 1 · D-18057 Rostock · GERMANY Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202; http://www.demogr.mpg.de MPIDR WORKING PAPER WP 2012-008 FEBRUARY 2012 The Gompertz distribution and Maximum Likelihood Estimation of its parameters - a revision Adam Lenart ([email protected]) This working paper has been approved for release by: James W. Vaupel ([email protected]), Head of the Laboratory of Survival and Longevity and Head of the Laboratory of Evolutionary Biodemography. © Copyright is held by the authors. Working papers of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions expressed in working papers are attributable to the authors and do not necessarily refl ect those of the Institute. The Gompertz distribution and Maximum Likelihood Estimation of its parameters - a revision Adam Lenart November 28, 2011 Abstract The Gompertz distribution is widely used to describe the distribution of adult deaths. Previous works concentrated on formulating approximate relationships to char- acterize it. However, using the generalized integro-exponential function Milgram (1985) exact formulas can be derived for its moment-generating function and central moments. Based on the exact central moments, higher accuracy approximations can be defined for them. In demographic or actuarial applications, maximum-likelihood estimation is often used to determine the parameters of the Gompertz distribution. By solving the maximum-likelihood estimates analytically, the dimension of the optimization problem can be reduced to one both in the case of discrete and continuous data. -
WHAT DID FISHER MEAN by an ESTIMATE? 3 Ideas but Is in Conflict with His Ideology of Statistical Inference
Submitted to the Annals of Applied Probability WHAT DID FISHER MEAN BY AN ESTIMATE? By Esa Uusipaikka∗ University of Turku Fisher’s Method of Maximum Likelihood is shown to be a proce- dure for the construction of likelihood intervals or regions, instead of a procedure of point estimation. Based on Fisher’s articles and books it is justified that by estimation Fisher meant the construction of likelihood intervals or regions from appropriate likelihood function and that an estimate is a statistic, that is, a function from a sample space to a parameter space such that the likelihood function obtained from the sampling distribution of the statistic at the observed value of the statistic is used to construct likelihood intervals or regions. Thus Problem of Estimation is how to choose the ’best’ estimate. Fisher’s solution for the problem of estimation is Maximum Likeli- hood Estimate (MLE). Fisher’s Theory of Statistical Estimation is a chain of ideas used to justify MLE as the solution of the problem of estimation. The construction of confidence intervals by the delta method from the asymptotic normal distribution of MLE is based on Fisher’s ideas, but is against his ’logic of statistical inference’. Instead the construc- tion of confidence intervals from the profile likelihood function of a given interest function of the parameter vector is considered as a solution more in line with Fisher’s ’ideology’. A new method of cal- culation of profile likelihood-based confidence intervals for general smooth interest functions in general statistical models is considered. 1. Introduction. ’Collected Papers of R.A. -
The Likelihood Principle
1 01/28/99 ãMarc Nerlove 1999 Chapter 1: The Likelihood Principle "What has now appeared is that the mathematical concept of probability is ... inadequate to express our mental confidence or diffidence in making ... inferences, and that the mathematical quantity which usually appears to be appropriate for measuring our order of preference among different possible populations does not in fact obey the laws of probability. To distinguish it from probability, I have used the term 'Likelihood' to designate this quantity; since both the words 'likelihood' and 'probability' are loosely used in common speech to cover both kinds of relationship." R. A. Fisher, Statistical Methods for Research Workers, 1925. "What we can find from a sample is the likelihood of any particular value of r [a parameter], if we define the likelihood as a quantity proportional to the probability that, from a particular population having that particular value of r, a sample having the observed value r [a statistic] should be obtained. So defined, probability and likelihood are quantities of an entirely different nature." R. A. Fisher, "On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample," Metron, 1:3-32, 1921. Introduction The likelihood principle as stated by Edwards (1972, p. 30) is that Within the framework of a statistical model, all the information which the data provide concerning the relative merits of two hypotheses is contained in the likelihood ratio of those hypotheses on the data. ...For a continuum of hypotheses, this principle -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
11. Parameter Estimation
11. Parameter Estimation Chris Piech and Mehran Sahami May 2017 We have learned many different distributions for random variables and all of those distributions had parame- ters: the numbers that you provide as input when you define a random variable. So far when we were working with random variables, we either were explicitly told the values of the parameters, or, we could divine the values by understanding the process that was generating the random variables. What if we don’t know the values of the parameters and we can’t estimate them from our own expert knowl- edge? What if instead of knowing the random variables, we have a lot of examples of data generated with the same underlying distribution? In this chapter we are going to learn formal ways of estimating parameters from data. These ideas are critical for artificial intelligence. Almost all modern machine learning algorithms work like this: (1) specify a probabilistic model that has parameters. (2) Learn the value of those parameters from data. Parameters Before we dive into parameter estimation, first let’s revisit the concept of parameters. Given a model, the parameters are the numbers that yield the actual distribution. In the case of a Bernoulli random variable, the single parameter was the value p. In the case of a Uniform random variable, the parameters are the a and b values that define the min and max value. Here is a list of random variables and the corresponding parameters. From now on, we are going to use the notation q to be a vector of all the parameters: Distribution Parameters Bernoulli(p) q = p Poisson(l) q = l Uniform(a,b) q = (a;b) Normal(m;s 2) q = (m;s 2) Y = mX + b q = (m;b) In the real world often you don’t know the “true” parameters, but you get to observe data. -
Statistical Theory
Statistical Theory Prof. Gesine Reinert November 23, 2009 Aim: To review and extend the main ideas in Statistical Inference, both from a frequentist viewpoint and from a Bayesian viewpoint. This course serves not only as background to other courses, but also it will provide a basis for developing novel inference methods when faced with a new situation which includes uncertainty. Inference here includes estimating parameters and testing hypotheses. Overview • Part 1: Frequentist Statistics { Chapter 1: Likelihood, sufficiency and ancillarity. The Factoriza- tion Theorem. Exponential family models. { Chapter 2: Point estimation. When is an estimator a good estima- tor? Covering bias and variance, information, efficiency. Methods of estimation: Maximum likelihood estimation, nuisance parame- ters and profile likelihood; method of moments estimation. Bias and variance approximations via the delta method. { Chapter 3: Hypothesis testing. Pure significance tests, signifi- cance level. Simple hypotheses, Neyman-Pearson Lemma. Tests for composite hypotheses. Sample size calculation. Uniformly most powerful tests, Wald tests, score tests, generalised likelihood ratio tests. Multiple tests, combining independent tests. { Chapter 4: Interval estimation. Confidence sets and their con- nection with hypothesis tests. Approximate confidence intervals. Prediction sets. { Chapter 5: Asymptotic theory. Consistency. Asymptotic nor- mality of maximum likelihood estimates, score tests. Chi-square approximation for generalised likelihood ratio tests. Likelihood confidence regions. Pseudo-likelihood tests. • Part 2: Bayesian Statistics { Chapter 6: Background. Interpretations of probability; the Bayesian paradigm: prior distribution, posterior distribution, predictive distribution, credible intervals. Nuisance parameters are easy. 1 { Chapter 7: Bayesian models. Sufficiency, exchangeability. De Finetti's Theorem and its intepretation in Bayesian statistics. { Chapter 8: Prior distributions. Conjugate priors. -
Empirical Bayes Methods for Combining Likelihoods Bradley EFRON
Empirical Bayes Methods for Combining Likelihoods Bradley EFRON Supposethat several independent experiments are observed,each one yieldinga likelihoodLk (0k) for a real-valuedparameter of interestOk. For example,Ok might be the log-oddsratio for a 2 x 2 table relatingto the kth populationin a series of medical experiments.This articleconcerns the followingempirical Bayes question:How can we combineall of the likelihoodsLk to get an intervalestimate for any one of the Ok'S, say 01? The resultsare presented in the formof a realisticcomputational scheme that allows model buildingand model checkingin the spiritof a regressionanalysis. No specialmathematical forms are requiredfor the priorsor the likelihoods.This schemeis designedto take advantageof recentmethods that produceapproximate numerical likelihoodsLk(6k) even in very complicatedsituations, with all nuisanceparameters eliminated. The empiricalBayes likelihood theoryis extendedto situationswhere the Ok'S have a regressionstructure as well as an empiricalBayes relationship.Most of the discussionis presentedin termsof a hierarchicalBayes model and concernshow such a model can be implementedwithout requiringlarge amountsof Bayesianinput. Frequentist approaches, such as bias correctionand robustness,play a centralrole in the methodology. KEY WORDS: ABC method;Confidence expectation; Generalized linear mixed models;Hierarchical Bayes; Meta-analysis for likelihoods;Relevance; Special exponential families. 1. INTRODUCTION for 0k, also appearing in Table 1, is A typical statistical analysis blends data from indepen- dent experimental units into a single combined inference for a parameter of interest 0. Empirical Bayes, or hierar- SDk ={ ak +.S + bb + .5 +k + -5 dk + .5 chical or meta-analytic analyses, involve a second level of SD13 = .61, for example. data acquisition. Several independent experiments are ob- The statistic 0k is an estimate of the true log-odds ratio served, each involving many units, but each perhaps having 0k in the kth experimental population, a different value of the parameter 0. -
Stat 3701 Lecture Notes: Statistical Models, Part II
Stat 3701 Lecture Notes: Statistical Models, Part II Charles J. Geyer August 12, 2020 1 License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http: //creativecommons.org/licenses/by-sa/4.0/). 2 R • The version of R used to make this document is 4.0.2. • The version of the rmarkdown package used to make this document is 2.3. • The version of the alabama package used to make this document is 2015.3.1. • The version of the numDeriv package used to make this document is 2016.8.1.1. 3 General Statistical Models The time has come to learn some theory. This is a preview of STAT 5101–5102. We don’t need to learn much theory. We will proceed with the general strategy of all introductory statistics: don’t derive anything, just tell you stuff. 3.1 Probability Models 3.1.1 Kinds of Probability Theory There are two kinds of probability theory. There is the kind you will learn in STAT 5101-5102 (or 4101–4102, which is more or less the same except for leaving out the multivariable stuff). The material covered goes back hundreds of years, some of it discovered in the early 1600’s. And there is the kind you would learn in MATH 8651–8652 if you could take it, which no undergraduate does (it is a very hard Ph. D. level math course). The material covered goes back to 1933. It is all “new math”. These two kinds of probability can be called classical and measure-theoretic, respectively. -
Maximum Likelihood Estimation
Chris Piech Lecture #20 CS109 Nov 9th, 2018 Maximum Likelihood Estimation We have learned many different distributions for random variables and all of those distributions had parame- ters: the numbers that you provide as input when you define a random variable. So far when we were working with random variables, we either were explicitly told the values of the parameters, or, we could divine the values by understanding the process that was generating the random variables. What if we don’t know the values of the parameters and we can’t estimate them from our own expert knowl- edge? What if instead of knowing the random variables, we have a lot of examples of data generated with the same underlying distribution? In this chapter we are going to learn formal ways of estimating parameters from data. These ideas are critical for artificial intelligence. Almost all modern machine learning algorithms work like this: (1) specify a probabilistic model that has parameters. (2) Learn the value of those parameters from data. Parameters Before we dive into parameter estimation, first let’s revisit the concept of parameters. Given a model, the parameters are the numbers that yield the actual distribution. In the case of a Bernoulli random variable, the single parameter was the value p. In the case of a Uniform random variable, the parameters are the a and b values that define the min and max value. Here is a list of random variables and the corresponding parameters. From now on, we are going to use the notation q to be a vector of all the parameters: In the real Distribution Parameters Bernoulli(p) q = p Poisson(l) q = l Uniform(a,b) q = (a;b) Normal(m;s 2) q = (m;s 2) Y = mX + b q = (m;b) world often you don’t know the “true” parameters, but you get to observe data. -
Estimation Methods in Multilevel Regression
Newsom Psy 526/626 Multilevel Regression, Spring 2019 1 Multilevel Regression Estimation Methods for Continuous Dependent Variables General Concepts of Maximum Likelihood Estimation The most commonly used estimation methods for multilevel regression are maximum likelihood-based. Maximum likelihood estimation (ML) is a method developed by R.A.Fisher (1950) for finding the best estimate of a population parameter from sample data (see Eliason,1993, for an accessible introduction). In statistical terms, the method maximizes the joint probability density function (pdf) with respect to some distribution. With independent observations, the joint probability of the distribution is a product function of the individual probabilities of events, so ML finds the likelihood of the collection of observations from the sample. In other words, it computes the estimate of the population parameter value that is the optimal fit to the observed data. ML has a number of preferred statistical properties, including asymptotic consistency (approaches the parameter value with increasing sample size), efficiency (lower variance than other estimators), and parameterization invariance (estimates do not change when measurements or parameters are transformed in allowable ways). Distributional assumptions are necessary, however, and there are potential biases in significance tests when using ML. ML can be seen as a more general method that encompasses ordinary least squares (OLS), where sample estimates of the population mean and regression parameters are equivalent for the two methods under regular conditions. ML is applied more broadly across statistical applications, including categorical data analysis, logistic regression, and structural equation modeling. Iterative Process For more complex problems, ML is an iterative process [for multilevel regression, usually Expectation- Maximization (EM) or iterative generalized least squares (IGLS) is used] in which initial (or “starting”) values are used first. -
Observed Information Matrix for MUB Models
Quaderni di Statistica Vol.8, 2006 Observed information matrix for MUB models Domenico Piccolo Dipartimento di Scienze Statistiche Università degli Studi di Napoli Federico II E-mail: [email protected] Summary: In this paper we derive the observed information matrix for MUB models, without and with covariates. After a review of this class of models for ordinal data and of the E-M algorithms, we derive some closed forms for the asymptotic variance- covariance matrix of the maximum likelihood estimators of MUB models. Also, some new results about feeling and uncertainty parameters are presented. The work lingers over the computational aspects of the procedure with explicit reference to a matrix- oriented language. Finally, the finite sample performance of the asymptotic results is investigated by means of a simulation experiment. General considerations aimed at extending the application of MUB models conclude the paper. Keywords: Ordinal data, MUB models, Observed information matrix. 1. Introduction “Choosing to do or not to do something is a ubiquitous state of ac- tivity in all societies” (Louvier et al., 2000, 1). Indeed, “Almost without exception, every human beings undertake involves a choice (consciously or sub-consciously), including the choice not to choose” (Hensher et al., 2005, xxiii). From an operational point of view, the finiteness of alternatives limits the analysis to discrete choices (Train, 2003) and the statistical interest in this area is mainly devoted to generate probability structures adequate to interpret, fit and forecast human choices1. 1 An extensive literature focuses on several aspects related to economic and market- 34 D. Piccolo Generally, the nature of the choices is qualitative (or categorical), and classical statistical models introduced for continuous phenomena are nei- ther suitable nor effective.