LEVERAGING BUSINESS INTELLIGENCE in SECURITY STRATEGY Oday, Nothing Is More Critical to Security and HARNESS BIG DATA Loss Prevention Operations Than Meaningful Data

Total Page:16

File Type:pdf, Size:1020Kb

LEVERAGING BUSINESS INTELLIGENCE in SECURITY STRATEGY Oday, Nothing Is More Critical to Security and HARNESS BIG DATA Loss Prevention Operations Than Meaningful Data LEVERAGING BUSINESS INTELLIGENCE IN SECURITY STRATEGY oday, nothing is more critical to security and HARNESS BIG DATA loss prevention operations than meaningful data. Every department within the operation Today, the sources and volume of data collected have bears the responsibility to not only provide exploded. Security operations collect every event and T incident from every transaction from various sources useful data, but to continually improve the value of that data. Business Intelligence (BI) is used to help including telephone/radio calls, alarms, environmen- companies gain insight into their operations; segment tal sensors, intrusion-detection systems, and video and target information to improve customer security, surveillance. safety, and experience while finding anomalies in the The modern security department uses a set of pro- heaps of data to run more efficiently and effectively. cesses and supporting technologies for data manage- This white paper explores how to change the game ment to allow security practitioners greater flexibility for companies. Learn how to collect and leverage in cobbling together disparate systems into a unified data to achieve effective loss prevention, risk mitiga- security information system that enables Security Di- tion, efficient fraud detection, incident analysis, and rectors to know exactly what’s going on, in real-time monitoring. while providing analysis to generate actionable items that can give security operations the agility it needs CAPITALIZING ON BIG DATA: Strategies outperforming companies are taking to deliver results Leaders are And are % % 75 166 2.2x of Leaders cite more likely to more likely to growth as the make most have formal key source of decisions career path value from based on data for analytics analytics 80% 60% 85% Leaders measure Leaders have Leaders have the impact predictive some form of of analytics analytics shared analytics investments capabilities resources Leveraging Business Intelligence in Security Strategy in times of crises. ACT We define “big data” as a capability that allows com- Proactive Risk panies to extract value from large volumes of data. Reduction Like any capability, it requires investments in tech- nologies, processes, and governance. There is no doubt that business intelligence software provides the ability to analyze a multitude of transac- tions and information on one centralized platform, empowering users to capture, analyze, and glean Understand actionable insight from the layers of data within the SEE EVERYTHING Context enterprise. Data-driven risk management requires situational awareness that can only come from a sys- SEE EVERYTHING temic and holistic approach. True value comes from correlating large amounts of incident and security data and presenting it in a visually appealing format, IT OPERATIONS SECURITY & LOSS PREVENTION whereby users are able to quickly draw conclusions • User Management • Outcomes & Involvements and act on them in a timely manner. • App Life cycle Management • Savings & Losses • Information Management • Compliance & Audits • Operations Management • Exception Alerting Nowhere is this more true than in the security func- • Network Management • Manpower Efficiency tion, where protection can only be as complete as situ- ational awareness. By giving safety, security, risk man- agement, and loss prevention managers the ability to reality of its application in the business unit and in track, organize, and analyze their data via configurable small to medium-sized businesses. For the purposes dashboard visualizations, BI software can provide con- of this paper, we will consider the iTrak® Business text and comparison of security-related information. Intelligence package available from iView Systems. This context moves the risk capabilities of an organi- While there are many competitors in the BI field— zation toward prevention from a traditional reactive many of which are already in use in organizations reporting and documentation function, providing the that have not adopted BI for security—iView software ability to show causality and structure, while giving is built specifically for the needs of security, surveil- insight into security and safety-related issues. lance, and loss prevention. Unlike SAP, Microsoft BI, IBM Cognos, and other enterprise-level BI solutions, More than 86 percent of respondents to a June 2016 iTrak® is not a software that needs to be bent to the survey by CIO Insight now say that BI is important to task of security and loss prevention through extensive their company and intrinsic to their role. Global rev- customization and programming, but one that can be enue in the business intelligence and analytics market immediately deployed to produce results. will grow more than 5 percent in 2016, reaching $16.9 billion this year according to a recent Gartner forecast. But it is only now that BI and analytics have BUSINESS INTELLIGENCE WITH ROOTS IN SECURITY AND LOSS PREVENTION matured enough that the market is offering easy- to-use, agile products designed for specific business BI is not shaping just the practice of security and functions. Off-the-shelf software products provide a loss prevention, but also their overall role in the way for data to be incorporated into larger enterprise enterprise. “In the security and related risk fields, BI. They are grounded in specific functions in a way data comes in an unending stream from every device that fills the gap between the promise of BI and the and direction,” says Martin Drew, president of iView Systems. Harnessing that data provides operational insights that create greater organizational efficiencies. The investment in security is no longer just about protecting assets—but about leveraging those ca- pabilities to create a financial return that is directly attributable to that investment. Security practitioners have long competed at a disad- vantage with other departments that made demon- strable connections to the financial bottom line. As the IT function became more integrated with security operations, the requirement to “make a business case” became the challenge for every upgrade or new investment. But as Avi Perez, the chief technical offi- 90% of information transmitted to the brain is visual cer for Pyramid Analytics writes, the best practices of and is processed 60,000 times faster in the brain than business intelligence are not about making business text. Companies can buy back time using compelling vi- cases, but about solving problems. suals and eliminate the noise of spreadsheet reporting. The iTrak® BI application was built explicitly for the security function and is rooted in just that—detect- ing anomalies in the data to solve problems. The first “Casinos would spend as much as five days of every and most obvious return on investment BI makes is month just doing required manual reports,” says in the reduction of manual security processes. Fully Giselle Chen, senior business intelligence analyst at 76 percent of midsize or larger companies (more iView Systems. Automating that process can virtual- than 500 employees) relied on manual processes ly eliminate that time requirement and improve the for exception alert reporting from physical security accuracy of reports, while speeding the dissemina- systems as recently as two years ago according to tion of the information to all identified stakeholders ASIS International research. Fewer than 30 percent by simply scheduling the reports to run at whatever of these same organizations had invested in business required interval. intelligence at that time. Considering that fully 71 “Several dashboards can eliminate virtually hun- percent of companies were using BI in some aspect dreds of reports and provide the ability to quickly of their operations as early as 2012, this represented a drill down from the highest summary to as many comparatively slow adoption rate by security practi- established groups and sub-groups as required—even tioners. When iView Systems committed to change down to individual incidents,” says Chen. The inves- these statistics with its iTrak® BI it found one of the tigation is not conducted through reams of paper, but most ready sectors to be the gaming industry. by highly intuitive paths navigated by the simple click Leveraging Business Intelligence in Security Strategy of a mouse. An international and analyzed by specific organization such as a hotel Several dashboards can eliminate regions, types of proper- would be able to identify gaps ties, or seasons of the year. in efficiency as the aggregate virtually hundreds of reports This is the nature of how effect impacts the overall BI and analytics provide organization. Users can also established reports and expect a substantial decline dashboards to raise situ- in errors. While errors will always occur, through BI ational awareness while providing ad hoc reporting they can be addressed at a systemwide process level to investigate the source of problems. Throughout and fixed once. With manual reporting, a certain the process, data visualizations depict the rows and persistent level of error exists mostly at the incident columns of raw data in an intuitive format. Incident report level. Training and active monitoring can help reports presented as bar charts immediately draw the to reduce these, but human error is simply the cost of eye to anomalies. Pie charts, heat maps, and bubble doing business with manual processes. graphs all create pictures that more directly engage the problem-solving capacity of the human
Recommended publications
  • Relationship Between Business Intelligence and Supply Chain Management for Marketing Decisions
    Universal Journal of Industrial and Business Management 2(2): 31-35, 2014 http://www.hrpub.org DOI: 10.13189/ ujibm.2014.020202 Relationship between Business Intelligence and Supply Chain Management for Marketing Decisions Neven Šerić1, *, Ante Rozga1, Ante Luetić2 1Faculty of Economics, University of Split, Cvite Fiskovića 5 2Split Shipyard,Put Supavla 21. *Corresponding Author: [email protected] Copyright © 2014 Horizon Research Publishing All rights reserved. Abstract The companies that apply the concept of to support marketing managers in making strategic and tactic business intelligence in their marketing decisions in some of decisions. The purpose of this study was to capture the the following ways were included in this study: at the level of companies that apply the concept of business intelligence in the entire system or specific marketing strategy of companies their business. While researching on the orientation on (e.g. marketing department, research development, supply chain and supply chain management, companies commercial, etc.), apply business intelligence only in certain selected were those which have been able to confirm that marketing processes or projects, used in business from the they have at least one link in the supply chain in order to be technology and platform for data warehouse, data mining, included in the sample. Also, they were supposed to be active OLAP tools, using advanced analytical techniques of when applying business intelligence for marketing function. simulation and visualization applications. Variables examined were categorized into four groups: business intelligence, supply chain management, information 2. Sample Selection and Questionnaire visibility and integration. Factor analysis was used to facilitate the connection of these groups of variables, i.e.
    [Show full text]
  • 6 Levels of Business Intelligence Value
    6 Levels of Business Intelligence Value In today’s hyper-competitive market environment, business intelligence continues to be an area of investment and interest for businesses. The ability to turn raw data into meaningful and useful information that can impact business performance 6 Levels of is a powerful value proposition. And, with technology and ease-of-use advances, BI Value business intelligence solutions today are more accessible to everyone across an organization – from supply chain managers to the vice president of sales to the C-suite. Yet many businesses are only scratching the surface of what’s possible with business intelligence. To realize the potential of business intelligence and take its value to the next level in your organization, you need a solid understanding of where you are, what you want to achieve, and what’s possible. From generating reports and charts that depict business performance, to implementing a truly transformative solution that uses powerful advanced analytics to predict behaviors and outcomes, business intelligence can be a strategic weapon that significantly impacts your bottom-line. The following 6 Levels of Business Intelligence Value depict types of analytical capabilities and their related value. The potential is huge. What level of value is your organization achieving today? Where will you take it tomorrow? High • What will happen? Machine Learning Prescriptive • When will it happen? Potential outcomes based • Why will it happen? on complex interactions Predictive • Based on historical data,
    [Show full text]
  • Pervasive Business Intelligence Techniques and Technologies to Deploy BI on an Enterprise Scale
    THIRD QUArtER 2008 TDWI BEST PRACtiCES REPORT PERVASIVE BUSINESS INTELLIGENCE Techniques and Technologies to Deploy BI on an Enterprise Scale By Wayne W. Eckerson www.tdwi.org Research Sponsors Business Objects, an SAP company Corda Technologies InetSoft Technology Corp. LogiXML Microsoft MicroStrategy SAS Strategy Companion third QUArtER 2008 TDWI BEST PRACtiCES REPORT PERVASIVE BUSINESS INTELLIGENCE By Wayne W. Eckerson T echniques and Technologies to Deploy BI on an Enterprise Scale Table of Contents Research Methodology . 3 Executive Summary . 4 Introduction . 5 BI Tool Adoption and Usage Rates . 6 Role-Based Adoption . 6 Adoption Obstacles . 7 Impediments to Usage . 8 Systems Theory and Business Intelligence . 11 The BI Tipping Point . 11 “Limits to Growth” Archetype . 12 Leverage Points . 14 Usability . 17 Design . 17 Support . 23 Architecture . 25 Change Management . 27 Project Management . 29 Recommendations . 31 www.tdwi.org 1 PERVasiVE busiNEss INTElligENCE About the Author WAYNE ECKERSON is the director of TDWI Research at The Data Warehousing Institute. Eckerson is an industry analyst, consultant, and educator who has served the DW and BI community since 1995. Among his numerous published works, Eckerson is author of the bestselling book Performance Dashboards: Measuring, Monitoring, and Managing Your Business. He is also the author of TDWI’s BI Maturity Model and Assessment Service, which enables organizations to benchmark their BI programs against industry norms. Eckerson speaks frequently at industry events and works closely with BI teams to optimize the agility and value of their BI initiatives. He can be reached at [email protected]. About TDWI TDWI, a division of 1105 Media, Inc., is the premier provider of in-depth, high-quality education and research in the business intelligence and data warehousing industry.
    [Show full text]
  • Evaluating Business Intelligence / Business Analytics Software for Use in the Information Systems Curriculum
    Information Systems Education Journal (ISEDJ) 13 (1) ISSN: 1545-679X January 2015 Evaluating Business Intelligence / Business Analytics Software for Use in the Information Systems Curriculum Gary Alan Davis [email protected] Charles R. Woratschek [email protected] Computer and Information Systems Robert Morris University Moon Township, PA 15108 USA Abstract Business Intelligence (BI) and Business Analytics (BA) Software has been included in many Information Systems (IS) curricula. This study surveyed current and past undergraduate and graduate students to evaluate various BI/BA tools. Specifically, this study compared several software tools from two of the major software providers in the BI/BA field. The participants in the study evaluated each software tool according to three key criteria: 1) functionality, 2) ease of use, and 3) learning effectiveness. The “learning effectiveness” criterion was used to determine which BI/BA tools provided the most effective learning of BI/BA concepts in the IS classroom. The three criteria were used to develop recommendations for including specific BI/BA software tools in the IS curriculum. Based on the findings of the study, the authors recommend that colleges and universities consider the use of the IBM-Cognos suite of tools as a viable means for teaching BI/BA concepts in their Information Systems curricula. The results of the study are relevant to any college or university that currently includes (or is considering the inclusion of) Business Intelligence / Business Analytics concepts in its Information Systems curriculum. Keywords: Business Intelligence, Business Analytics, Software Evaluation, Information Systems Curriculum 1. INTRODUCTION students who are attending/have attended BI/BA-related courses.
    [Show full text]
  • A Model to Manage Cooperative Project Risks to Create Knowledge and Drive Sustainable Business
    sustainability Article A Model to Manage Cooperative Project Risks to Create Knowledge and Drive Sustainable Business Marco Nunes 1,* , António Abreu 2,3,* and Célia Saraiva 4 1 Department of Industrial Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal 2 Department of Mechanical Engineering, Polytechnic Institute of Lisbon, 1959-007 Lisbon, Portugal 3 CTS Uninova, Centre of Technology and Systems, 2829-516 Caparica, Portugal 4 Department of Science and Technology, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; [email protected] * Correspondence: [email protected] or [email protected] (M.N.); [email protected] (A.A.) Abstract: Efficient cooperation between organizations across all the phases of a project lifecycle is a critical factor to increase the chances of project success and drive sustainable business. However, and according to research, despite the large benefits that efficient organizational cooperation provides to organizations, they are still often reluctant to engage in cooperative partnerships. The reviewed literature argues that the major reason for such a trend is due to the lack of efficient and actionable supportive models to manage organizational cooperative risks. In this work we propose a model to efficiently support the management of organizational cooperative risks in project environments. The model, MCPx (management of cooperative projects), was developed based on four critical scientific pillars, (1) project risk management, (2) cooperative networks, (3) social network analysis, and (4) business intelligence architecture, and will analyze in a quantitative way how project cooperative behaviors evolve across a bounded time period, and to which extent they can turn into a cooperative Citation: Nunes, M.; Abreu, A.; project risk (essentially potential threats).
    [Show full text]
  • Conversational BI: an Ontology-Driven Conversation System for Business Intelligence Applications
    Conversational BI: An Ontology-Driven Conversation System for Business Intelligence Applications Abdul Quamar1, Fatma Ozcan¨ 1, Dorian Miller2, Robert J Moore1, Rebecca Niehus2, Jeffrey Kreulen2 1IBM Research AI, 2IBM Watson Health 1ahquamar|fozcan|[email protected], 2millerbd|rniehus|[email protected] ABSTRACT Business intelligence (BI) applications play an important role in the enterprise to make critical business decisions. Conversational interfaces enable non-technical enterprise us- ers to explore their data, democratizing access to data signif- icantly. In this paper, we describe an ontology-based frame- Business Model work for creating a conversation system for BI applications (Cube Definition) termed as Conversational BI. We create an ontology from a business model underlying the BI application, and use this ontology to automatically generate various artifacts of the conversation system. These include the intents, entities, as well as the training samples for each intent. Our approach builds upon our earlier work, and exploits common BI ac- RDBMS cess patterns to generate intents, their training examples Figure 1: Traditional BI System Architecture and adapt the dialog structure to support typical BI op- erations. We have implemented our techniques in Health etc. Figure 1 shows a typical architecture of a BI stack. Insights (HI), an IBM Watson Healthcare offering, provid- The underlying data resides in a traditional RDBMS, and ing analysis over insurance data on claims. Our user study a business model is created in terms of an OLAP cube def- demonstrates that our system is quite intuitive for gaining inition [13] that describes the underlying data in terms of business insights from data.
    [Show full text]
  • Business Intelligence (BI) Strategy
    BUSINESS Planning & Business INTELLIGENCE Intelligence IT Services STRATEGY January 2015 A Business Intelligence Strategy for harnessing and exploiting the data in the University’s central business systems, external sources including social media, regulatory data and survey data in order to secure competitive advantage. 1 Executive Summary What are we trying to achieve? Enhancing the Business Intelligence capability of the University will ensure that SMG and staff have a clear and straightforward insight into both internal and external data, have top quality management and performance information and are able to better forecast future trends through the deployment of predictive analytics. This can be delivered through our IT networks to PCs, laptops, tablets and smartphones. In short, we will access, collate and combine our corporate information in new ways to improve the way we work. Timely access to trusted data will inform actionable decision making to improve alignment with University strategy, improve efficiencies and effectiveness, reduce operational costs, ensure statutory compliance and minimise risk. The key to BI success at UOG is achieving ease of use of BI reporting systems to ensure widespread acceptance and end user self- service. This will be achieved by the provision of delivered standard reporting at a detailed level as well as the ability to generate bespoke analyses. What is Business Intelligence? Business Intelligence (BI) is a set of methodologies, processes, architectures, and technologies that transform raw data into meaningful and useful information which can be used to enable more effective strategic, tactical, and operational insights and decision- making. Its end result should be to transform the way information is used to assist the University in moving forward.
    [Show full text]
  • Erprise Resources Planning (ERP) Framework for Flexible Manufacturing Systems Using Business Intelligence (BI) Tools
    International Journal of Supply and Operations Management IJSOM May 2016, Volume 3, Issue 1, pp. 1112-1125 ISSN-Print: 2383-1359 ISSN-Online: 2383-2525 www.ijsom.com An Integrated Enterprise Resources Planning (ERP) Framework for Flexible Manufacturing Systems Using Business Intelligence (BI) Tools Mehrdad Nouri Koupaei a, Mohammad Mohammadi a* and Bahman Naderi a a Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran Abstract Nowadays Business intelligence (BI) tools provide optimal decision making, analyzing, controlling and monitoring of operations in enterprise systems like enterprise resource planning (ERP) and mainly refer to strong decision making methods used in online analytical processing, reporting and data analysis, such as improving internal processes, analysis of resources, information needs analysis, costs reduction and revenue increase. The main purpose of the paper is creating a unified framework for the application of BI in ERP systems which results of value-added inflexible manufacturing systems (FMS). In this paper, business process system and interaction between technology and environment by applying BI in ERP systems of companies that use flexible manufacturing systems have been presented. This paper is a comprehensive review of recent literature that examined the effects of BI systems on the four levels of Tenhiala et al.' Model. This model based on cross-sectional data from 151 manufacturing plants proved that ERP is essential for the FMS. According to results of this paper, the answer to this question is important “How can we use the potential data and intelligence of BI in ERP systems for the effective flexible manufacturing systems?” This study has four hypotheses to answer this question and based on results, all four hypotheses were confirmed.
    [Show full text]
  • 021-2012: How to Create a Business Intelligence Strategy
    SAS Global Forum 2012 Applied Business Intelligence Paper 021-2012 How to create a Business Intelligence Strategy Guy Garrett, Achieve Intelligence Limited, Brighton, East Sussex, United Kingdom ABSTRACT You may wonder how some organizations are so astute at managing to keep abreast of changing customer behavior in the market. There are undoubtedly many factors - however central to the answer is that they recognize the value of their information assets and alter their strategic vision with new perspective. A Business Intelligence Strategy is a roadmap that enables businesses to measure their performance and seek out competitive advantages and truly "listen to their customers" using data mining and statistics. INTRODUCTION In this paper, you'll discover the crucial questions to answer when aligning a BI strategy to your organization’s overall direction, an overview of the artifacts to deliver, and how SAS® software can underpin your strategy throughout the process. WHAT IS A BUSINESS INTELLIGENCE STRATEGY In 1958, IBM researcher Hans Peter Luhn summarized “the ability to apprehend the interrelationships of presented facts in such a way as to guide action towards a desired goal” as Business Intelligence. Today, would he be surprised to know that many companies fail to create a BI Strategy, resulting in misalignment of their strategic vision versus it's execution. In a performance related culture we should be clear about what we measure, as organizations, and how to drive improvement from our analyses. Statistics are used throughout the media and in day-to-day life to try to make sense of why events have happened the way they have and to try and predict how they may happen in the future.
    [Show full text]
  • The Use of Business Intelligence Tools to Drive Asset Performance Management Improvements
    The Use of Business Intelligence Tools to Drive Asset Performance Management Improvements By Mark Brennan Philippe Loustau Alesio Lanzara Engineering Manager Principal Engineer Specialist Consulting Engineer Vibration, dynamics and noise (formerly BETA Machinery Analysis) Wood Group Presented at: Gas Machinery Conference 2017 Pittsburgh, PA 1. Introduction A wealth of data is held by organizations in disparate systems such as maintenance management, enterprise resource planning (ERP), process control, process historians, condition monitoring, asset integrity management and a plethora of spreadsheets. Typically these data sets are stored and analyzed independently, however, maintenance and reliability practitioners frequently have to bring data together from multiple sources to support decision making or to identify improvement opportunities. And these processes can often be challenging, inefficient and time-consuming, with the effectiveness of the outcome influenced by the spreadsheet skills and determination of the individual. The latest generation of business intelligence (BI) tools, often already available and being used within an organization, are an efficient, repeatable way to draw information together and present a more complete and timely picture of asset performance and asset health. Whereas these BI tools can open up endless possibilities for data analysis, data visualization and the calculation of performance metrics that are potentially “interesting”, challenges lie in the inconsistency of data across systems, gaps in data sets, inaccuracies in data and differing thoughts on how to use the data to address organizational imperatives. Using case studies from a variety of gas machinery and industrial applications, this paper explores the challenges and benefits of the BI tools approach to analyzing asset performance and asset management programs.
    [Show full text]
  • Business Intelligence for Creating an Inclusive Model of Contracting and Procurement in the City of Durham
    FRANK HAWKINS KENAN INSTITUTE OF PRIVATE ENTERPRISE REPORT BUSINESS INTELLIGENCE FOR CREATING AN INCLUSIVE MODEL OF CONTRACTING AND PROCUREMENT IN THE CITY OF DURHAM JAMES H. JOHNSON, JR., Ph.D. URBAN INVESTMENT STRATEGY CENTER BUSINESS INTELLIGENCE RESEARCH BRIEF • KENAN INSTITUTE REPORT INTRODUCTION Gentrifying cities increasingly are adopting inclusive and equitable development policies, strategies, tools, and regulatory practices to minimize, if not altogether eliminate, the demographic and economic dislocations that often accompany their growing attractiveness as ideal places to live, work, and play for a creative class of young people and well-resourced retirees who are predominantly white (Delgado, 2014; Liu, 2016; Baux, 2018; Coffin, 2018; McFarland, 2016; Parilla, Joseph, 2017). Creating greater opportunities for historically under-utilized businesses to grow and prosper through enhanced local government contracting and procurement is one mechanism through which gentrifying cities are trying to generate greater equity and shared prosperity (Brichi, 2004; Edelman and Azemati, 2017; Robinson, 2017). Specifically, local officials in such cities are moving aggressively to transform their existing procurement systems into fully automated supply chain management systems, with the overarching goal of making their entrepreneurial/ business ecosystems—the major job generators and sources of wealth creation--more transparent, accessible, equitable, and inclusive for diverse suppliers of goods and services ((Florida, 2017; Lohrentz, 2016; McKoy and Johnson, 2018; Fairchild and Rose, 2018) . For cities like Durham that are struggling with how to respond to gentrification-induced demographic and economic dislocations (DeMarco and Hunt, 2018; Vaughan and Brosseau, 2018), the concept of an inclusive supply chain management system may be difficult to comprehend (Willets, 2017).
    [Show full text]
  • Traditional BI Vs. Business Data Lake – a Comparison the Need for New Thinking Around Data Storage and Analysis
    Traditional BI vs. Business Data Lake – A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses on structured data but they are not designed to handle unstructured data. For these systems Big Data brings big problems because the data that flows in may be either structured or unstructured. That makes them hugely limited when it comes to delivering Big Data benefits. The way forward is a complete rethink of the way we use BI - in terms of how the data is ingested, stored and analyzed. 2 Traditional BI vs. Business Data Lake – A comparison Pivotal the way we see it Further problems come with the need for near real-time analysis. This requires the ability to handle and process high velocity data in near-real time - a major challenge for the traditional BI implementation methods, which have data latency built into their architecture. Solutions have been developed to circumvent these issues and bring in as much data as feasible in near real-time, but these create their own problems - not least the issue of high storage volumes and costs. The emergence of Big Data calls for a radically new approach to data management. Organizations now need near real-time analysis on structured and unstructured data. Traditional BI approaches that call for building EDWs and data marts are unable to keep up. The answer is the Business Data Lake (BDL). A Business Data Lake is a data repository that can store and handle massive amounts of structured, semi-structured and unstructured data in its raw form in low cost commodity storage as it arrives.
    [Show full text]