Group Isomorphisms - Some Intuition

Total Page:16

File Type:pdf, Size:1020Kb

Group Isomorphisms - Some Intuition Group Isomorphisms - Some Intuition The idea of an \isomorphism" is central to algebra. It's our version of equality - two objects are considered isomorphic if they are essentially the same. Before studying the technical definitions, consider a (slightly mathematical) example from language. We'll define a few finite sets: 1. f I, II, III, IV, V, VI g 2. f uno, dos, tres, cuatro, cinco, seis g 3. f 一, 二, 三, 四, 五, m g 4. f one, two, three, four, five, six g 5. f 1, 2, 3, 4, 5, 6 g 6. f un, deux, trois, quatre, cinq, six g 7. f I, II, III, IV, V, VI g Even if you don't recognize all of them, hopefully at least one or two sets look familiar. Based on that, you might make a conjecture about a set you don't recognize. They are, in fact, all the same - the first element of each set is used to represent the idea of a single entity, or the first object in an arrangement. The second element of each set represents a pair, and so on. The fact that each set has the same number of elements is not the important part; rather, it's that we can replace one set with another, without changing the inherent meaning. Regardless of the language or symbols we use for them, numbers are the same - the number systems we use are isomorphic, and the map between them is the isomorphism (in this case, a multi-language dictionary would make a good map). There is only one set of numbers, we just have many names for them. Many groups we've already seen are isomorphic to each other. This is a stronger property than simply counting the number of elements in the group. If two groups G and H are isomorphic, then for every element of G there is an element of H that \behaves" the same way: it will have the same order, among many other properties. In addition, the groups themselves will have similar properties, even though their elements and operations are different. Even when groups appear to be similar (perhaps they have the same order, or are both infinite and Abelian, etc) they may not be isomorphic. Math 280 Fall 2015 Part 2: Groups Group Isomorphisms Definition Let φ : G ! H be a map from a group G to a group H such that 1. φ preserves the operations of the groups (that is, φ is a homomorphism) 2. φ is onto: for every h 2 H, there is some g 2 G such that φ(g) = h 3. φ is one-to-one: if g1; g2 2 G and g1 6= g2, then φ(g1) 6= φ(g2) If such a map exists, then G and H are called isomorphic, and the map φ is called an isomorphism. In this case, we write G ≈ H. Proving that groups are isomorphic requires finding a map between the groups, and showing that it is an operation-preserving bijection. Example We'll show that R, the group of real numbers under addition, is isomorphic to the group G of positive real numbers under multiplication. Define a map φ : R ! G by φ(x) = ex (or if you prefer, φ(x) = exp(x)). First note that φ is defined for any real number x, and that ex > 0 for any x, so this really is a map from R into G. Next, we show that all three properties of an isomorphism are satisfied: 1. φ preserves the operations of the groups: Let x; y 2 R. Then φ(x + y) = ex+y = exey = φ(x)φ(y) 2. φ is onto: Let g 2 G, so g is a positive real number. Let x = ln(g). Then φ(x) = ex = eln(g) = g 3. φ is one-to-one. Suppose x; y 2 R such that φ(x) = φ(y). Then ex = ey, so ln(ex) = ln(ey) and we have x = y. Example It is important to note that a map can fail to be an isomorphism, even when it is a bijective map from a group to itself. For instance, define φ : R ! R by φ(x) = x3. This is a one-to-one, onto map. However, if x; y 2 R, we have φ(x + y) = (x + y)3 6= x3 + y3 = φ(x) + φ(y) so the map does not preserve the group operation of addition. Theorem 1 Every infinite cycle group is isomorphic to Z under addition. Math 280 Fall 2015 Part 2: Groups Cayley tables can be used to decide if two groups G and H are isomorphic. If the elements in the Cayley table of G can be relabelled with the elements of H to yield the Cayley table of H (possible after rearranging rows or columns), then G and H are isomorphic. Example Compare the table of U(5) on the left to the table of Z4 on the right: ×5 1 2 3 4 +4 0 1 2 3 1 1 2 3 4 0 0 1 2 3 2 2 4 1 3 1 1 2 3 0 3 3 1 4 2 2 2 3 0 1 4 4 3 2 1 3 3 0 1 2 The operations and sets are completely different, though both groups have order 4. We'll try to find a way of relabeling the elements in the table of U(5) with those of Z4. First, the identity of U(5) is 1, while the identity of Z4 is 0, so it makes sense to relabel 1 with 0: 0 0 0 0 0 0 Next, note that the element 4 in U(5) has order 2, just like the element 2 in Z4. So, next we'll relabel 4 with 2: 0 2 0 0 2 2 0 0 2 2 2 0 Similarly, the element 3 in U(5) has order 3, just like the element 3 in Z4, so we'll keep the 3's where they are. While we're at it, we'll replace 2 in U(5) with the only remaining element of Z4, 1 (both of these have order 4): 0 1 3 2 0 0 1 3 2 1 1 2 0 3 3 3 0 2 1 2 2 3 1 0 This is still not exactly what we were looking for, but if we switch the last two rows and last two columns of the table (so the row and column labels are in order), we have So, the groups U(5) and Z4 are isomorphic. If we need the specific +4 0 1 2 3 0 0 1 2 3 1 1 2 3 0 2 2 3 0 1 3 3 0 1 2 isomorphism, it's the map that accomplishes our relabelling: φ : U(5) ! Z4 defined by φ(1) = 0; φ(2) = 1; φ(3) = 3; φ(4) = 2 This is clearly a bijective, but as an example of how the operations are preserved: φ(2 ×5 3) = φ(1) = 0 = 1 +4 3 = φ(2) +4 φ(3) Math 280 Fall 2015 Part 2: Groups The next theorem can be a very useful way of deciding if a homomorphism between groups is actually an isomorphism: we just have to find its kernel. If the kernel contains an element other than the identity, the map cannot be an isomorphism. Theorem 2 A group homomorphism is one-to-one if and only if the kernel contains only the identity element. Theorem 3 (Properties of Isomorphic Groups) Suppose G and H are isomorphic groups, with isomorphism φ : G ! H. Then 1. G and H have the same order. 2. If G and H are finite, they have the same number of elements of each order. 3. G is Abelian if and only if H is Abelian. 4. G is cyclic if and only if H is cyclic. If G = hgi, then H = hφ(g)i. 5. φ is invertible, and φ−1 : H ! G is also an isomorphism. 6. If K is a subgroup of G, then φ(K) is a subgroup of H. 7. If Z(G) is the center of G, then φ(Z(G)) is the center of H. Theorem 4 (Properties of Isomorphisms and Group Elements) Let φ : G ! H be a group isomorphism. Then 1. φ(eG) = eH , where eG; eH are the identity elements of G; H, respectively. 2. for all g 2 G, φ(gn) = (φ(g))n. 3. jgj = jφ(g)j for all g 2 G. 4. if g1; g2 2 G, then g1g2 = g2g1 if and only if φ(g1)φ(g2) = φ(g2)φ(g1). Definition An isomorphism φ : G ! G from a group G to itself is called an automorphism. Theorem 5 The set of automorphisms on a group G (that is, the set of all isomorphisms from a group to itself) forms a group under function composition, denoted Aut(G). Proof Before starting the proof, it's important to understand the group we're working with. The elements of Aut(G) are isomor- phisms (functions), not the elements of G. Furthermore, its operation is function composition, regardless of the operation on G. We need to show several things here. First, we need to prove that the composition of automorphisms leads to another automorphism; that is, that composition is a closed, binary operation on this set. Next, we have to show that the group properties hold. Let φ and be automorphisms on the group G, so both map G into itself, both preserve group operations, and both are bijections.
Recommended publications
  • Chapter 4. Homomorphisms and Isomorphisms of Groups
    Chapter 4. Homomorphisms and Isomorphisms of Groups 4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a function or a map from X to Y , written f : X ! Y , we mean that for every x 2 X there exists a unique corresponding element y = f(x) 2 Y . The set X is called the domain of f and the range or image of f is the set Image(f) = f(X) = f(x) x 2 X . For a set A ⊆ X, the image of A under f is the set f(A) = f(a) a 2 A and for a set −1 B ⊆ Y , the inverse image of B under f is the set f (B) = x 2 X f(x) 2 B . For a function f : X ! Y , we say f is one-to-one (written 1 : 1) or injective when for every y 2 Y there exists at most one x 2 X such that y = f(x), we say f is onto or surjective when for every y 2 Y there exists at least one x 2 X such that y = f(x), and we say f is invertible or bijective when f is 1:1 and onto, that is for every y 2 Y there exists a unique x 2 X such that y = f(x). When f is invertible, the inverse of f is the function f −1 : Y ! X defined by f −1(y) = x () y = f(x). For f : X ! Y and g : Y ! Z, the composite g ◦ f : X ! Z is given by (g ◦ f)(x) = g(f(x)).
    [Show full text]
  • Group Homomorphisms
    1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Categories, Functors, and Natural Transformations I∗
    Lecture 2: Categories, functors, and natural transformations I∗ Nilay Kumar June 4, 2014 (Meta)categories We begin, for the moment, with rather loose definitions, free from the technicalities of set theory. Definition 1. A metagraph consists of objects a; b; c; : : :, arrows f; g; h; : : :, and two operations, as follows. The first is the domain, which assigns to each arrow f an object a = dom f, and the second is the codomain, which assigns to each arrow f an object b = cod f. This is visually indicated by f : a ! b. Definition 2. A metacategory is a metagraph with two additional operations. The first is the identity, which assigns to each object a an arrow Ida = 1a : a ! a. The second is the composition, which assigns to each pair g; f of arrows with dom g = cod f an arrow g ◦ f called their composition, with g ◦ f : dom f ! cod g. This operation may be pictured as b f g a c g◦f We require further that: composition is associative, k ◦ (g ◦ f) = (k ◦ g) ◦ f; (whenever this composition makese sense) or diagrammatically that the diagram k◦(g◦f)=(k◦g)◦f a d k◦g f k g◦f b g c commutes, and that for all arrows f : a ! b and g : b ! c, we have 1b ◦ f = f and g ◦ 1b = g; or diagrammatically that the diagram f a b f g 1b g b c commutes. ∗This talk follows [1] I.1-4 very closely. 1 Recall that a diagram is commutative when, for each pair of vertices c and c0, any two paths formed from direct edges leading from c to c0 yield, by composition of labels, equal arrows from c to c0.
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
    Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0.
    [Show full text]
  • Homomorphisms and Isomorphisms
    Lecture 4.1: Homomorphisms and isomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 4.1: Homomorphisms and isomorphisms Math 4120, Modern Algebra 1 / 13 Motivation Throughout the course, we've said things like: \This group has the same structure as that group." \This group is isomorphic to that group." However, we've never really spelled out the details about what this means. We will study a special type of function between groups, called a homomorphism. An isomorphism is a special type of homomorphism. The Greek roots \homo" and \morph" together mean \same shape." There are two situations where homomorphisms arise: when one group is a subgroup of another; when one group is a quotient of another. The corresponding homomorphisms are called embeddings and quotient maps. Also in this chapter, we will completely classify all finite abelian groups, and get a taste of a few more advanced topics, such as the the four \isomorphism theorems," commutators subgroups, and automorphisms. M. Macauley (Clemson) Lecture 4.1: Homomorphisms and isomorphisms Math 4120, Modern Algebra 2 / 13 A motivating example Consider the statement: Z3 < D3. Here is a visual: 0 e 0 7! e f 1 7! r 2 2 1 2 7! r r2f rf r2 r The group D3 contains a size-3 cyclic subgroup hri, which is identical to Z3 in structure only. None of the elements of Z3 (namely 0, 1, 2) are actually in D3. When we say Z3 < D3, we really mean is that the structure of Z3 shows up in D3.
    [Show full text]
  • Friday September 20 Lecture Notes
    Friday September 20 Lecture Notes 1 Functors Definition Let C and D be categories. A functor (or covariant) F is a function that assigns each C 2 Obj(C) an object F (C) 2 Obj(D) and to each f : A ! B in C, a morphism F (f): F (A) ! F (B) in D, satisfying: For all A 2 Obj(C), F (1A) = 1FA. Whenever fg is defined, F (fg) = F (f)F (g). e.g. If C is a category, then there exists an identity functor 1C s.t. 1C(C) = C for C 2 Obj(C) and for every morphism f of C, 1C(f) = f. For any category from universal algebra we have \forgetful" functors. e.g. Take F : Grp ! Cat of monoids (·; 1). Then F (G) is a group viewed as a monoid and F (f) is a group homomorphism f viewed as a monoid homomor- phism. e.g. If C is any universal algebra category, then F : C! Sets F (C) is the underlying sets of C F (f) is a morphism e.g. Let C be a category. Take A 2 Obj(C). Then if we define a covariant Hom functor, Hom(A; ): C! Sets, defined by Hom(A; )(B) = Hom(A; B) for all B 2 Obj(C) and f : B ! C, then Hom(A; )(f) : Hom(A; B) ! Hom(A; C) with g 7! fg (we denote Hom(A; ) by f∗). Let us check if f∗ is a functor: Take B 2 Obj(C). Then Hom(A; )(1B) = (1B)∗ : Hom(A; B) ! Hom(A; B) and for g 2 Hom(A; B), (1B)∗(g) = 1Bg = g.
    [Show full text]
  • 7.3 Isomorphisms and Composition
    392 Linear Transformations 7.3 Isomorphisms and Composition Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out to be the same underlying space displayed in different symbols. For example, consider the spaces 2 R = (a, b) a, b R and P1 = a + bx a, b R { | ∈ } { | ∈ } Compare the addition and scalar multiplication in these spaces: (a, b)+(a1, b1)=(a + a1, b + b1) (a + bx)+(a1 + b1x)=(a + a1)+(b + b1)x r(a, b)=(ra, rb) r(a + bx)=(ra)+(rb)x Clearly these are the same vector space expressed in different notation: if we change each (a, b) in R2 to 2 a + bx, then R becomes P1, complete with addition and scalar multiplication. This can be expressed by 2 noting that the map (a, b) a + bx is a linear transformation R P1 that is both one-to-one and onto. In this form, we can describe7→ the general situation. → Definition 7.4 Isomorphic Vector Spaces A linear transformation T : V W is called an isomorphism if it is both onto and one-to-one. The vector spaces V and W are said→ to be isomorphic if there exists an isomorphism T : V W, and → we write V ∼= W when this is the case. Example 7.3.1 The identity transformation 1V : V V is an isomorphism for any vector space V . → Example 7.3.2 T If T : Mmn Mnm is defined by T (A) = A for all A in Mmn, then T is an isomorphism (verify).
    [Show full text]
  • Monomorphism - Wikipedia, the Free Encyclopedia
    Monomorphism - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Monomorphism Monomorphism From Wikipedia, the free encyclopedia In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism, that is, an arrow f : X → Y such that, for all morphisms g1, g2 : Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. The categorical dual of a monomorphism is an epimorphism, i.e. a monomorphism in a category C is an epimorphism in the dual category Cop. Every section is a monomorphism, and every retraction is an epimorphism. Contents 1 Relation to invertibility 2 Examples 3 Properties 4 Related concepts 5 Terminology 6 See also 7 References Relation to invertibility Left invertible morphisms are necessarily monic: if l is a left inverse for f (meaning l is a morphism and ), then f is monic, as A left invertible morphism is called a split mono. However, a monomorphism need not be left-invertible. For example, in the category Group of all groups and group morphisms among them, if H is a subgroup of G then the inclusion f : H → G is always a monomorphism; but f has a left inverse in the category if and only if H has a normal complement in G.
    [Show full text]
  • CS E6204 Lecture 5 Automorphisms
    CS E6204 Lecture 5 Automorphisms Abstract An automorphism of a graph is a permutation of its vertex set that preserves incidences of vertices and edges. Under composition, the set of automorphisms of a graph forms what algbraists call a group. In this section, graphs are assumed to be simple. 1. The Automorphism Group 2. Graphs with Given Group 3. Groups of Graph Products 4. Transitivity 5. s-Regularity and s-Transitivity 6. Graphical Regular Representations 7. Primitivity 8. More Automorphisms of Infinite Graphs * This lecture is based on chapter [?] contributed by Mark E. Watkins of Syracuse University to the Handbook of Graph The- ory. 1 1 The Automorphism Group Given a graph X, a permutation α of V (X) is an automor- phism of X if for all u; v 2 V (X) fu; vg 2 E(X) , fα(u); α(v)g 2 E(X) The set of all automorphisms of a graph X, under the operation of composition of functions, forms a subgroup of the symmetric group on V (X) called the automorphism group of X, and it is denoted Aut(X). Figure 1: Example 2.2.3 from GTAIA. Notation The identity of any permutation group is denoted by ι. (JG) Thus, Watkins would write ι instead of λ0 in Figure 1. 2 Rigidity and Orbits A graph is asymmetric if the identity ι is its only automor- phism. Synonym: rigid. Figure 2: The smallest rigid graph. (JG) The orbit of a vertex v in a graph G is the set of all vertices α(v) such that α is an automorphism of G.
    [Show full text]
  • 1 the Spin Homomorphism SL2(C) → SO1,3(R) a Summary from Multiple Sources Written by Y
    1 The spin homomorphism SL2(C) ! SO1;3(R) A summary from multiple sources written by Y. Feng and Katherine E. Stange Abstract We will discuss the spin homomorphism SL2(C) ! SO1;3(R) in three manners. Firstly we interpret SL2(C) as acting on the Minkowski 1;3 spacetime R ; secondly by viewing the quadratic form as a twisted 1 1 P × P ; and finally using Clifford groups. 1.1 Introduction The spin homomorphism SL2(C) ! SO1;3(R) is a homomorphism of classical matrix Lie groups. The lefthand group con- sists of 2 × 2 complex matrices with determinant 1. The righthand group consists of 4 × 4 real matrices with determinant 1 which preserve some fixed real quadratic form Q of signature (1; 3). This map is alternately called the spinor map and variations. The image of this map is the identity component + of SO1;3(R), denoted SO1;3(R). The kernel is {±Ig. Therefore, we obtain an isomorphism + PSL2(C) = SL2(C)= ± I ' SO1;3(R): This is one of a family of isomorphisms of Lie groups called exceptional iso- morphisms. In Section 1.3, we give the spin homomorphism explicitly, al- though these formulae are unenlightening by themselves. In Section 1.4 we describe O1;3(R) in greater detail as the group of Lorentz transformations. This document describes this homomorphism from three distinct per- spectives. The first is very concrete, and constructs, using the language of Minkowski space, Lorentz transformations and Hermitian matrices, an ex- 4 plicit action of SL2(C) on R preserving Q (Section 1.5).
    [Show full text]