<<

Fukun Tang Institute, The University of 5640 S. Ellis Ave, Chicago, IL 60637, USA Tel: (773)-834-4286 Fax: (773)-702-2971 Email: [email protected]

Professional Employment: 1994.12-present: Sr. Electronics Engineer, , The , USA. 1994.6-1994.12: Research Associate, Carnegie Mellon University, USA. 1993.1-1994.5: Electronics Engineer, Fermi National Accelerator Laboratory, USA. 1988.3-1992.12: Electronics Engineer, IHEP, China. 1986.3-1988.2: Electronics Engineer, Fermi National Accelerator Laboratory, USA 1979.1-1986.2: Assistant Engineer, IHEP, China.

Professional Service: Member of IEEE. Member of Scientific Advisory Committee of Computer Applications in Nuclear and Plasma Sciences, IEEE. Elsevior Reviewer of Nuclear Instruments and Methods in Research Section A. Peer Reviewer of Transactions on Nuclear Science. Referee of IEEE NSS/MIC Conference. Member of Nuclear Electronics and Detector Technology Society of China (1980-1986). Member of Nuclear Medical Imaging Technology Society of China (1980-1986).

USA Patents: (1): 2011/0220,802 Use of Flat Panel Micro-channel Photomultipliers in Sampling Calorimeter with Timing. (2) US Patent No: 7485872, Large area, Pico-second Resolution, Time of Flight Detectors

Education: 1978, Nuclear Electronics, University of Science and Technology of China 2005, Project Management Program, The University of Chicago.

Fields of Expertise: Very high speed, low-noise analog front-end, data acquisition and trigger electronics for high energy physics experiments, astronomy and cosmology researches. Ultra-high speed pulse sampling techniques for large-area, - seconds timing resolution of time-of-flight applications for high energy experiments and Positron Emission Tomography (PET) instrumentations. Deep-micron custom ASIC and system level designs.

Selected Publications: (more than 70 papers as a first author or co-author) 1) Design of the front-end readout electronics for ATLAS Tile Calorimeter at the sLHC F. Tang, K. Anderson (Chicago U., EFI), G. Drake (Argonne), J.F. Genat, M. Oreglia, J. Pilcher (Chicago U., EFI), L. Price (Argonne). 2013. 5 pp. Published in IEEE Trans.Nucl.Sci. 60 (2013) 1255-1259

2) Development of a readout link board for the demonstrator of the ATLAS Tile calorimeter upgrade With S. Muschter (Stockholm U.) et al. 2013. Published in JINST 8 (2013) C03025

3) FTK: A fast track trigger for ATLAS With J. Anderson (Argonne), A. Andreazza (INFN, Milan & Milan U.), A. Annovi (Frascati), M. Atkinson ( U., Urbana), G. Blazey (Northern Illinois U.) et al. 2012. Published in JINST 7 (2012) C10002

4) Development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) G. Deputch, J. Hoff, R. Lipton, T. Liu, J. Olsen, E. Ramberg, Jin-Yuan Wu, R. Yarema (), M. Shochet, F. Tang (Chicago U.) et al.. Apr 13, 2011. 38 pp. FERMILAB-TM-2493-CMS-E-PPD-TD

5) Position Sensing Using Pico-second Timing with Micro-Channel Plate Devices and Waveform Sampling Karen Byrum (Argonne), Henry J. Frisch, Jean-Francois C. Genat, Mary K. Heintz (Chicago U., EFI), Edward N. May (Argonne), Tyler Natoli, Fukun Tang (Chicago U., EFI), Eugene Yurtsev (Argonne). 2010. 8 pp. Published in IEEE Trans.Nucl.Sci. 57 (2010) 525-532

6) A Multi-Threshold Sampling Method for TOF PET Signal Processing H. Kim, C.-M. Kao, Q. Xie, C.-T. Chen, L. Zhou, F. Tang, H. Frisch, W.W. Moses, W.S. Choong, Nuclear Instrument and Methods in Physics Research, A, 602, pp. 618–621, 2009.

7) Pico-second Timing with Micro-Channel Plate Devices and Waveform Sampling Readout Electronics F. Tang, J.-F. Genat, H. Frisch, M. Heintz and T. Natoli, K. Byrum, E. May and E. Yurtsev Proceedings of IEEE NPSS real time conference, Beijing, 2009

8) Signal Processing for Pico-second Resolution Timing Measurements J-F. Genat, G. Varner, F. Tang, H. Frisch . Nucl.Instrum.Meth.A607:387-393,2008

9) Transmission-line Readout with Good Timing and Spatial Resolutions for Planacon MCP-PMTs F. Tang, J.-F. Genat, H. Frisch, M. Heintz and T. Natoli, K. Byrum, E. May and E. Yurtsev J. Anderson, K. Byrum, G. Drake, C. Ertley, Edward May Electronics for 579-582, 2008

10) Development of a Front-end Electronics for Picosecond Resolution G. Drake, K. Karen, H. Frisch, H. Sanders, F. Tang.15th IEEE real time conference, Batavia, IL. 2007

11) Development of Front-end Electronics for Picosecond Resolution TOF detectors F. Tang, H. Frisch, M. Heintz, H. Sanders, J. Anderson, K. Byrum, G. Drake J-F Genat Proceedings of topical workshop on electronics for particle physics, Prague, Czech. 2007

12) MCP-PMT Anode Development for Picosecond-Resolution Time-of-Flight Detectors F. Tang , T.Credo, H. Frisch, H. Sanders, K. Byrum and G. Drake, Proceedings of IEEE NSS/MIC, 2007, Honolulu, Hawaii.

13) Development of a Readout System for Large Scale Time-of-Flight Systems with Picosecond Resolution T. Credo, H. Frisch, H. Sanders, F. Tang, J. van Santen, K. Byrum and G. Drake. Proceedings of IEEE NSS/MIC, San Diego, CA. 2006

14) Psec TOF for Particle Identification at HEP Credo, H. Frisch, R. Schroll, H. Sanders, and F. Tang, Proceedings of IEEE NSS/MIC, Rome, Italy. 2004.

15) Design of the Front-end Analog Electronics for the ATLAS Tile Calorimeter K. Anderson, A. Gupta, F. Merritt, M. Oreglia, J. Pilcher, H. Sanders, M. Shochet, F. Tang, R.Teuscher, H.Wu G. Blanchot, M. Cavalli-Sforza, I. Korolkov Nucl.Instrum.Meth.A551:469-476, 2005.

16) ATLAS Tile Calorimeter Interface K. Anderson, A. Gupta, J. Pilcher, H. Sanders, F. Tang, R. Teuscher, H. Wu. Proceedings of 8th workshop on electronics for the LHC experiments, p269-273, 2002.

17) The ATLAS Tile Calorimeter Digitizer S.Berglund, C. Bohm, M. Engstrom, S-O. Holmgren, K. Jon-And, J. Klereborn, M. Ramstedt, B. Sellden, S. Silverstein, K. Anderson, A. Hocker, J. Pilcher, H. Sanders, F. Tang, H.Wu. Nuclear Science Symposium. IEEE Vol. 2, p760-764,1999

18) A Multiplicity Trigger Processor for a - Plasma Search at the C. Hojvat, H. Areti, S. Hansen, F. Tang, Chi-ho Wang. Nucl.Instrum.Meth.A337:306-313,1993.

Presentation: “Upgrade of ATLAS Tile Calorimeter Front-end Readout and Data Acquisition Electronics” (Atlas 强子量能器读出电子 学的升级设计) This presentation will cover the latest development in the upgraded design of Atlas Tile Calorimter Front-end readout electronics and data acquisition system for ATLAS experiment at High Luminosity LHC. The Tile Calorimeter is essential for measuring the energy and direction of the and produced in the collisions. These appear in the detector as jets of charged and neutral particles. The calorimeter consists of a fine- grained steel matrix with 430,000 "tiles" of plastic dispersed in the matrix. Optical fibers from the tiles are grouped into 5,000 calorimeter cells, whose signals are detected and recorded by 10,000 photomultiplier tubes and associated readout electronics. Signals from each photomultiplier are digitized every 25 ns and processed with dedicated electronics to obtain energy and time measurements.