Bartlett Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dalton Transactions
Dalton Transactions View Article Online PAPER View Journal | View Issue The role of neutral Rh(PONOP)H, free NMe2H, boronium and ammonium salts in the dehydro- Cite this: Dalton Trans., 2019, 48, 14724 coupling of dimethylamine-borane using the 2 + cationic pincer [Rh(PONOP)(η -H2)] catalyst†‡ E. Anastasia K. Spearing-Ewyn,a Nicholas A. Beattie,b Annie L. Colebatch, a Antonio J. Martinez-Martinez, a Andrew Docker,a Timothy M. Boyd,a Gregg Baillie,b Rachel Reed,b Stuart A. Macgregor *b and Andrew S. Weller *a 1 F 3 The σ-amine-borane pincer complex [Rh(PONOP)(η -H3B·NMe3)][BAr 4][2, PONOP = κ -NC5H3-2,6- t 2 F (OP Bu2)2] is prepared by addition of H3B·NMe3 to the dihydrogen precursor [Rh(PONOP)(η -H2)][BAr 4], 1 F 1. In a similar way the related H3B·NMe2H complex [Rh(PONOP)(η -H3B·NMe2H)][BAr 4], 3, can be made in situ, but this undergoes dehydrocoupling to reform 1 and give the aminoborane dimer [H2BNMe2]2. Creative Commons Attribution 3.0 Unported Licence. NMR studies on this system reveal an intermediate neutral hydride forms, Rh(PONOP)H, 4, that has been prepared independently. 1 is a competent catalyst (2 mol%, ∼30 min) for the dehydrocoupling of H3B·Me2H. Kinetic, mechanistic and computational studies point to the role of NMe2H in both forming the neutral hydride, via deprotonation of a σ-amine-borane complex and formation of aminoborane, and Received 17th August 2019, closing the catalytic cycle by reprotonation of the hydride by the thus-formed dimethyl ammonium Accepted 3rd September 2019 + + [NMe2H2] . -
Chemical Compatibility of Fused Filament Fabrication-Based 3-D
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Chemical compatibility of fused filament fabrication-based 3-D printed components with solutions commonly used in semiconductor wet processing Ismo T.S Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja Asikainen, Steven Spoljaric, Jukka Seppälä, Hele Savin, Joshua Pearce To cite this version: Ismo T.S Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja Asikainen, Steven Spoljaric, etal.. Chemical compatibility of fused filament fabrication-based 3-D printed components with solutions commonly used in semiconductor wet processing. Additive Manufacturing, Elsevier, 2018, 23, pp.99- 107. 10.1016/j.addma.2018.07.015. hal-02111366 HAL Id: hal-02111366 https://hal.archives-ouvertes.fr/hal-02111366 Submitted on 26 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preprint: Ismo T. S. Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja M. Asikainen, Steven Spoljaric, Jukka V. Seppälä, Hele Savin, and Joshua M. Pearce. Chemical Compatibility of Fused Filament Fabrication -based 3-D Printed Components with Solutions Commonly Used in Semiconductor Wet Processing. Additive Manufacturing. -
Laboratory Chemical Waste Management Guidelines
LABORATORY CHEMICAL WASTE MANAGEMENT GUIDELINES Revision: July, 2018 EHRS Environmental Health & Radiation Safety 3160 Chestnut Street, Suite 400 Philadelphia, PA 19104-6287 Contents 1. Overview ............................................................................................................................................ 3 2. When is Hazardous Waste Regulated? .............................................................................................. 3 3. What is Hazardous Waste? ................................................................................................................. 3 4. Hazardous chemical waste determination ......................................................................................... 5 5. Essential rules for managing hazardous chemical materials .............................................................. 5 5.1 Waste minimization ..................................................................................................................... 5 5.2 Storing waste in the lab (Satellite Accumulation) ...................................................................... 6 5.3 Container management in SAA’s ................................................................................................ 7 5.4 Waste containers ......................................................................................................................... 7 5.4.1 Properly labeling waste containers ...................................................................................... 7 5.4.2 -
Elements of a Glovebox Glove Integrity Program
RESEARCH ARTICLE Elements of a Glovebox Glove Integrity Program Programmatic operations at the Los Alamos National Laboratory Plutonium Facility involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator’s breathing zone are prevented through the use of a variety of gloveboxes. The glovebox gloves are the weakest part of this engineering control. As a matter of good business practice, a team of glovebox experts from Los Alamos National Laboratory has been assembled to proactively investigate processes and procedures that minimize unplanned openings in the glovebox gloves, i.e., breaches and failures. Working together, they have developed the key elements of an efficient Glovebox Glove Integrity Program (GGIP). In the following report, the consequences of a glove failure or breach are identified, the acceptable risk is clarified, and elements needed to implement an efficient GGIP are discussed. By Michael E. Cournoyer, INTRODUCTION Through an integrated approach, Julio M. Castro, controls have been developed and Michelle B. Lee, Plutonium requires a high degree of implemented that come from input Cindy M. Lawton, confinement and continuous control from glovebox workers, scientists, Young Ho Park, measures in nuclear research labora- health physicists, statisticians, and phy- Roy Lee, tories because of its extremely low sical therapists. Working together, they Stephen Schreiber permissible body burden.1 Methods have developed an efficient Glovebox and equipment must be designed Glove Integrity Program (GGIP). toward the ultimate accomplishment Recent accomplishes of this team have 2–5 Michael E. -
General Glovebox Rules
Glovebox etiquette in the Lewis group Introduction: The gloveboxes are here to assist you in oxygen and water sensitive chemistry. The following guidelines are given to protect the box atmosphere and longevity and ultimately your chemistry and that of the whole group. If you feel that these guidelines impede your ability to do work, talk about it with the person in charge of the glovebox and they will help assist you in designing a set up that will work for you! Disregarding the guidelines compromises your chemistry as well as everyone elses. Available boxes: *Big Bird – Vac, purchased 2008. Drybox, Ar. Noyes 227B. Use for electrochemistry. O2 < 0.5 ppm *Snuffleupagus – Vac, older than time. Drybox, N2. Noyes 227B. Use for electrochemistry and storage. Absolutely no bad solvents/chemicals with the exception of CH3CN open for <5 minutes at a time. O2 < 1 ppm *Oscar the Grouch – Vac, older than time. Flushbox, N2. Noyes 227B. Alcohol OK. Electrochemistry, set-up, surface chemistry. O2 < 10 ppm *Elmo – Vac, purchased 2008. Drybox, N2. BI 032. Electrochemistry and chemical synthesis. O2 < 0.5 ppm *Count von Count – Mbraun, less old than time. Drybox, N2. BI 032. Don, Tony, electrochemistry and set up. O2 < 1 ppm *Cookie Monster – Vac, eh? As old as time?. Flushbox, N2. BI 023. Alcohol OK. Electrochemistry, set-up, surface chemistry. Connected to XPS. O2 < 10 ppm Note: Contact Box Czar before using a new box – even if you are trained on the old box. If nothing else, so they can keep track of who is using what and include you on important info for that box. -
Chem 1140; Techniques for Handling Air-Sensitive Compounds
P. Wipf 1 Chem 1140 Chem 1140; Techniques for Handling Air-Sensitive Compounds • Introduction • The Glove Box • Schlenk Techniques • Drying and Degassing Solvents What are Air-Sensitive Compounds? Materials which oxidize, decompose or even explode under the influence of oxygen or moisture. • Pyrophoric Compounds Metal alkyls and aryls e.g. RMgX, RLi, RNa,R3Al, R2Zn Metal carbonyls e.g. Ni(CO)4, Fe(CO)5, Co2(CO)8 Alkali metals e.g. Na, K, Cs Metal powders e.g. Al, Co, Fe, Mg, Pd, Pt, Zn Metal hydrides e.g. NaH, KH, LiAlH4 Hydrides e.g. B2H6, PH3, AsH3 Boranes, phosphines, arsenes, etc. e.g. Et3B, R3P, R3As • Chemicals which react violently with water Metal hydrides, metal amides (NaNH2), metal alkyls and aryls, metals, metal powders, hydrides, many main group halides (BCl3, BF3, AlCl3, PCl3, SiCl4), inorganic acid halides (POCl3, SOCl2), low molecular weight organic acid halides and anhydrides. Glove boxes and Schlenk techniques do NOT protect from explosive or shock sensitive materials or mixtures!!! Also, they only provide limited protection from toxic compounds. P. Wipf 2 Chem 1140 The Glove Box • The best way to keep things away from atmospheric oxygen and water is to work in a fully enclosed “bench top,” containing an “inert atmosphere,” which one could reach into with gloves. Such a device is called a “glove box” or a “dry box”. There are also cheap “glove bags”, bags you can fill with inert gas and reach into with attached gloves. The Glove Box A glove box has four important components: 1. The actual “box” is a large aluminum chamber with a plastic front window and two impressive looking gloves. -
Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear Or Radiological Emergency
CONTAMINATION EPR-INTERNAL AND RESPONSE PREPAREDNESS EMERGENCY EPR-INTERNAL EPR-INTERNAL CONTAMINATION CONTAMINATION 2018 2018 2018 Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear or Radiological Emergency Contaminatedin aNuclear with Radionuclides Internally of Persons Management Medical Medical Management of Persons Internally Contaminated with Radionuclides in a Nuclear or Radiological Emergency A Manual for Medical Personnel Jointly sponsored by the Endorsed by AMERICAN SOCIETY FOR RADIATION ONCOLOGY INTERNATIONAL ATOMIC ENERGY AGENCY V I E N N A ISSN 2518–685X @ IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS IAEA SAFETY STANDARDS Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. The publications by means of which the IAEA establishes standards are issued in the IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport safety and waste safety. The publication categories in the series are Safety Fundamentals, Safety Requirements and Safety Guides. Information on the IAEA’s safety standards programme is available on the IAEA Internet site http://www-ns.iaea.org/standards/ The site provides the texts in English of published and draft safety standards. The texts of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the IAEA Safety Glossary and a status report for safety standards under development are also available. For further information, please contact the IAEA at: Vienna International Centre, PO Box 100, 1400 Vienna, Austria. All users of IAEA safety standards are invited to inform the IAEA of experience in their use (e.g. -
Evaluation of Cleaning Methods for Multilayer Diffraction Gratings
EVALUATION OF CLEANING METHODS FOR MULTILAYER DIFFRACTION GRATINGS Evaluation of Cleaning Methods for Multilayer Diffraction Gratings Introduction monly used cleaning processes for the removal of organics Multilayer dielectric (MLD) diffraction gratings are essential (i.e., residual resist) from a surface and is usually used at a high components for the OMEGA EP short-pulse, high-energy temperature.1,2 Although Piranha solution is highly effective in laser system, so they must have both high optical-diffraction removing organic contamination, it does not remove all inorganic efficiency and high laser-damage threshold. The cleanliness of contaminants. Piranha solution must be prepared immediately optical surfaces intended to be deployed in high-peak-power before use, has a very limited shelf life, and cannot be stored in laser systems is of paramount importance, and the fabrication normal closed containers due to an explosive pressure buildup of these MLD gratings involves processes that utilize a wide caused by the gradual loss of hydrogen peroxide gas. variety of both organic materials (photoresists, photoresist solvents, and photoresist developers) and inorganic materi- Piranha + SC-1 Process: The cleaning method that is com- als (metals and oxides of various cationic elements) that may monly used to remove inorganic contamination after Piranha remain behind either on the surfaces or in the grooves of the clean (described above) is SC-1 (Standard Clean 1) coupled MLD structure after processing. Because a substantial number with megasonics (high-frequency ultrasonic energy).1,3 The of these materials can have significant optical absorbance, the SC-1 solution of ammonia hydroxide, hydrogen peroxide, incomplete removal of these residues puts the MLD gratings and DI water is also cable of removing additional organic at an increased risk of experiencing catastrophic laser-induced contaminants. -
Oxidation of N-Doped Multiwalled Carbon Nanotubes and Formation of Discontinuous Spiraled Carbon Nanoribbons Aman Preet Kaur University of Kentucky, [email protected]
University of Kentucky UKnowledge Chemistry Faculty Publications Chemistry 6-7-2018 Oxidation of N-Doped Multiwalled Carbon Nanotubes and Formation of Discontinuous Spiraled Carbon Nanoribbons Aman Preet Kaur University of Kentucky, [email protected] Mark S. Meier University of Kentucky, [email protected] Rodney Andrews University of Kentucky, [email protected] Dali Qian University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub Part of the Nanoscience and Nanotechnology Commons, and the Organic Chemistry Commons Repository Citation Kaur, Aman Preet; Meier, Mark S.; Andrews, Rodney; and Qian, Dali, "Oxidation of N-Doped Multiwalled Carbon Nanotubes and Formation of Discontinuous Spiraled Carbon Nanoribbons" (2018). Chemistry Faculty Publications. 124. https://uknowledge.uky.edu/chemistry_facpub/124 This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Oxidation of N-Doped Multiwalled Carbon Nanotubes and Formation of Discontinuous Spiraled Carbon Nanoribbons Notes/Citation Information Published in Arkivoc, v. 2018, part iv, p. 257 - 275. © ARKAT USA, Inc Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by- nc/4.0/. Material from ARKIVOC may be stored and used electronically free of charge by any individual or organization but resale of electronically stored material requires permission of the Publisher. -
Piranha Solution Safety Guidelines
PIRANHA SOLUTION SAFETY GUIDELINES The Piranha solution is used in etching processes to remove organic residues from substrates. Two different solutions can be used. The most common is the acid Piranha which consists of a 3:1 mixture of concentrated sulfuric acid (H2SO4) with 30% hydrogen peroxide (H2O2). Also used is the base Piranha which is a 3:1 mixture of ammonium hydroxide (NH4OH) with 30% hydrogen peroxide (H2O2). Both are equally dangerous when hot, although the reaction in the acid Piranha is self-starting, whereas the base piranha must be heated to 60°C before the reaction takes off. Anyone who works in laboratories containing Piranha solution should familiarize themselves with its SDS and a clear Standard Operating Procedure (SOP) should be established. Therefore, careful precaution should always be taken when handling this solution. This document discusses the properties, health and safety hazards, how to properly handle and store a Piranha solution. Also included are emergency procedures for dealing with accidental Piranha solution contact, including first aid treatment information. WARNING: Piranha solutions are VERY DANGEROUS! In addition to being a corrosive liquid and strong oxidizer, there are many things which will cause the reaction to accelerate out of control ranging from foaming out of its bin to an explosion with a huge shock wave with possible acid (or base)-gown shredding glass sharps. Piranhas burn (oxidize) organic compounds. If you provide sufficient fuel for them (i.e. photoresist, IPA), they will generate -
Standard Glovebox Workstations
STANDARD GLOVEBOX WORKSTATIONS www.mbraun.com Light Hood *Freezer Flange DN 40 KF Adjustable Shelving Large Antechamber *Analyzers *Small Antechamber Fine Filter Stainless Steel Piping Programmable Logic Controller Glove Ports Gas Purification System Castors for Easy Mobility Vacuum Pump Leveling Feet Foot Switch *LABstar glovebox workstation is pictured with optional features MBRAUN GLOVEBOX WORKSTATION GLOVEBOX MBRAUN Light Hood Touch Screen PLC Controller *Freezer Adjustable Shelving Large Antechamber *Analyzers Flange DN 40 KF Glove Ports *Small Antechamber Stainless Steel Piping Fine Filter Gas Purification System Castors for Easy Mobility Leveling feet Foot Switch Flow Meter *UNIlab glovebox workstation is pictured with optional features Light Hood Color Touch Screen PLC Controller Adjustable Shelving Large Antechamber Glove Ports *Small Antechamber Fine Filter Flange DN 40 KF Gas Purification Single (SP) or Double (DP) Purifier Unit *External Solvent Trap Castors for Easy Mobility Vacuum Pump Foot Switch Leveling Feet *LABmaster SP/DP glovebox workstation is pictured with optional features GLOVEBOX CONFIGURATIONS MAY VARY LABstar Standard Features: • Programmable logic controller • Large main antechamber • Three glovebox sizes available LAB • Vacuum pump • Automatic regenerable H O/O WORKSTATION 2 2 single column inert gas purifier • World-wide operation using standard power supply The LABstar workstation is a ready to operate high • Integrated high vacuum feedthroughs • Stainless steel adjustable shelving quality glovebox system -
LC-1 Stand Alone Glovebox Operation Manual
LC-1 Stand Alone Glovebox Operation Manual Table of Contents 1. System Overview Page 4 2. Installation Instructions Page 5 - 8 2.1 Attach Gloves Page 5 2.2 Glovebox Connections Page 6 - 8 3. Operational Instructions Page 9 - 39 3.1 Purge System Page 9 - 13 3.1.1 Purging without a Purge Valve Page 9 - 10 3.1.2 Purging with a Manual Purge Valve Page 11 - 12 3.1.3 Purging with an Automatic Purge Valve Page 13 3.2 Normal / Circulation Mode Page 14 - 15 3.3 Antechamber Operation Page 16 - 25 3.3.1 Antechamber Door Operation for Systems Without an Page 16 -17 Antechamber 3.3.2 Antechamber Door Operation for Systems With an Page 18 - 21 Antechamber 3.3.2.1 Bringing Items into Glovebox Page 18 - 20 3.3.2.2 Removing Items from Glovebox Page 21 3.3.3 Mini Antechamber Operation Page 22 - 23 3.3.4 Automatic Antechamber Control Page 24 - 25 3.4 Regeneration Mode Page 26 - 27 3.5 Service Mode Page 28 - 32 3.6 Analyzers Page 33 3.7A Manual Solvent Removal System Operation & Maintenance Page 34 - 35 3.7.1A Manual Solvent Removal System Operation Page 34 3.7.2A Manual Solvent Removal System Maintenance Page 35 3.7B Automatic Solvent Removal System Operation Page 36 - 37 3.7.1B Automatic Solvent Removal System Operation Page 36 3.7.2B Automatic Solvent Removal Reactivation Page 37 3.8 Freezer Operation and Maintenance Page 38 - 39 3.8.1 Freezer Operation Page 38 3.8.2 Freezer Maintenance Page 39 3.9 Box Cooling Operation Page 40 2 3.10 Alarm Messages Page 41 - 42 3.11 Window Removal Page 43 3.12 Window Replacement Page 44 3.13 Maintenance Schedule & Recommended Spare Parts Page 45 3 LC-1 Stand Alone Glovebox Operation Manual Section 1: System Overview Antechamber Star Knobs Antechamber Evacuate/Refill Buttons -35°C Freezer Vacuum Gauge Mini Antechamber Window Frame Mini Antechamber Evacuate/Refill Valve Glove Ports PLC Controller Chiller Butyl Gloves Electrical Cabinet Foot Pedals Gas Purification System Power Switch Solvent Removal System Blower Vacuum Filter Pump Column 4 Section 2: Installation Instructions 2.1 Attach Gloves -Place glove onto the glove port.