Dodger Day Set for June 21 Science Under The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TWAS Fellowships Worldwide
CDC Round Table, ICTP April 2016 With science and engineering, countries can address challenges in agriculture, climate, health TWAS’s and energy. guiding principles 2 Food security Challenges Water quality for a Energy security new era Biodiversity loss Infectious diseases Climate change 3 A Globally, 81 nations fall troubling into the category of S&T- gap lagging countries. 48 are classified as Least Developed Countries. 4 The role of TWAS The day-to-day work of TWAS is focused in two critical areas: •Improving research infrastructure •Building a corps of PhD scholars 5 TWAS Research Grants 2,202 grants awarded to individuals and research groups (1986-2015) 6 TWAS’ AIM: to train 1000 PhD students by 2017 Training PhD-level scientists: •Researchers and university-level educators •Future leaders for science policy, business and international cooperation Rapidly growing opportunities P BRAZIL A K I N D I CA I RI A S AF TH T SOU A N M KENYA EX ICO C H I MALAYSIA N A IRAN THAILAND TWAS Fellowships Worldwide NRF, South Africa - newly on board 650+ fellowships per year PhD fellowships +460 Postdoctoral fellowships +150 Visiting researchers/professors + 45 17 Programme Partners BRAZIL: CNPq - National Council MALAYSIA: UPM – Universiti for Scientific and Technological Putra Malaysia WorldwideDevelopment CHINA: CAS - Chinese Academy of KENYA: icipe – International Sciences Centre for Insect Physiology and Ecology INDIA: CSIR - Council of Scientific MEXICO: CONACYT– National & Industrial Research Council on Science and Technology PAKISTAN: CEMB – National INDIA: DBT - Department of Centre of Excellence in Molecular Biotechnology Biology PAKISTAN: ICCBS – International Centre for Chemical and INDIA: IACS - Indian Association Biological Sciences for the Cultivation of Science PAKISTAN: CIIT – COMSATS Institute of Information INDIA: S.N. -
Millennium Prize for the Poincaré
FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T. -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Case 2:21-cv-01051 Document 1 Filed 02/04/21 Page 1 of 29 Page ID #:1 1 MAYER BROWN LLP JOHN NADOLENCO (SBN 181128) 2 [email protected] C. MITCHELL HENDY (SBN 282036) 3 [email protected] 350 South Grand Avenue, 25th Floor 4 Los Angeles, CA 90071-1503 5 Telephone: (213) 229-9500 6 A. JOHN P. MANCINI (pro hac vice forthcoming) 7 [email protected] JONATHAN W. THOMAS 8 (pro hac vice forthcoming) [email protected] 9 1221 Avenue of the Americas New York, NY 10020 10 Telephone: (212) 506-2295 11 Attorneys for Plaintiff 12 Pasadena Tournament of Roses Association 13 UNITED STATES DISTRICT COURT 14 CENTRAL DISTRICT OF CALIFORNIA 15 PASADENA TOURNAMENT OF 16 Case No.: 2:21-cv-01051 ROSES ASSOCIATION, 17 COMPLAINT FOR: (1) Plaintiff, DECLARATORY RELIEF UNDER 18 28 U.S.C. § 2201(a); (2) TRADEMARK INFRINGEMENT 19 v. UNDER 15 U.S.C. § 1114; (3) UNFAIR COMPETITION, FALSE 20 CITY OF PASADENA, ASSOCIATION, FALSE ENDORSEMENT, AND FALSE 21 DESIGNATION OF ORIGIN Defendant. UNDER 15 U.S.C. § 1125(a)(1)(A); 22 (4) FALSE ADVERTISING UNDER 15 U.S.C. § 1125(a)(1)(B); (5) 23 VIOLATIONS OF CAL. BUS. & PROF. CODE § 17200 et seq.; (6) 24 COMMON LAW TRADEMARK INFRINGEMENT; (7) BREACH 25 OF CONTRACT; AND (8) SLANDER OF TITLE 26 JURY TRIAL DEMANDED 27 28 COMPLAINT, CASE NO. 2:21-CV-01051 Case 2:21-cv-01051 Document 1 Filed 02/04/21 Page 2 of 29 Page ID #:2 1 Plaintiff, the Pasadena Tournament of Roses Association (“Plaintiff” or 2 “TOR”), by and through its undersigned counsel, as and for its Complaint against 3 Defendant, the City of Pasadena (“Defendant”), hereby alleges as follows based on 4 knowledge of its own actions, and on information and belief as to all other matters 5 (unless indicated otherwise herein): 6 NATURE OF THE ACTION 7 1. -
4. a Close Call: How a Near Failure Propelled Me to Succeed By
Early Career When I entered graduate study at Princeton, I brought A Close Call: How a my study habits (or lack thereof) with me. At the time in Princeton, the graduate classes did not have any home- Near Failure Propelled work or tests; the only major examination one had to pass (apart from some fairly easy language requirements) were Me to Succeed the dreaded “generals’’—the oral qualifying exams, often lasting over two hours, that one would take in front of Terence Tao three faculty members, usually in one’s second year. The questions would be drawn from five topics: real analysis, For as long as I can remember, I was always fascinated by complex analysis, algebra, and two topics of the student’s numbers and the formal symbolic operations of mathe- choice. For most of the other graduate students in my year, matics, even before I knew the uses of mathematics in the preparing for the generals was a top priority; they would real world. One of my earliest childhood memories was read textbooks from cover to cover, organise study groups, demanding that my grandmother, who was washing the and give each other mock exams. It had become a tradition windows, put detergent on the windows in the shape of for every graduate student taking the generals to write up numbers. When I was particularly rowdy as a child, my the questions they received and the answers they gave for parents would sometimes give me a math workbook to future students to practice. There were even skits performed work on instead, which I was more than happy to do. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Tao Awarded Nemmers Prize
Tao Awarded Nemmers Prize Northwestern University has announced that numerous other awards, including the Terence Chi-Shen Tao has received the 2010 Salem Prize (2000), the Bôcher Prize Frederic Esser Nemmers Prize in Mathematics, be- (2002), the Clay Research Award of the lieved to be one of the largest monetary awards in Clay Mathematics Institute (2003), the mathematics in the United States, for outstanding SASTRA Ramanujan Prize (2006), the achievements in the discipline. Awarded to schol- Ostrowski Prize (2007), the Waterman ars who made major contributions to new knowl- Award (2008), and the King Faisal Prize edge or to the development of significant new (cowinner, 2010). He is a Fellow of the modes of analysis, the prize carries a US$175,000 Royal Society, the Australian Academy stipend. of Sciences (corresponding member), Tao, a professor of mathematics at University the U.S. National Academy of Sciences of California, Los Angeles, was honored “for math- (foreign member), and the American ematics of astonishing breadth, depth and original- Academy of Arts and Sciences. ity”. In connection with the award, Tao will deliver Tao’s research interests include Terence Tao public lectures and participate in other scholarly harmonic analysis, partial dif- activities at Northwestern during the 2010–2011 ferential equations, combinatorics, and num- and 2011–2012 academic years. ber theory. He is an associate editor of the Tao, who has been dubbed the “Mozart of American Journal of Mathematics (2002–) and Math”, was born in Adelaide, Australia, in 1975. of Dynamics of Partial Differential Equations He started to learn calculus when he was seven (2003–) and an editor of the Journal of the Ameri- years old. -
The Work of Terence Tao
The work of Terence Tao Charles Fefferman Mathematics at the highest level has several flavors. On seeing it, one might say: (A) What amazing technical power! (B) What a grand synthesis! (C) How could anyone not have seen this before? (D) Where on earth did this come from? The work of Terence Tao encompasses all of the above. One cannot hope to capture its extraordinary range in a few pages. My goal here is simply to exhibit a few contributions by Tao and his collaborators, sufficient to produce all the reactions (A)...(D). I shall discuss the Kakeya problem, nonlinear Schrödinger equations and arithmetic progressions of primes. Let me start with a vignette from Tao’s work on the Kakeya problem, a beautiful and fundamental question at the intersection of geometry and combinatorics. I shall state the problem, comment briefly on its significance and history, and then single out my own personal favorite result, by Nets Katz and Tao. The original Kakeya problem was to determine the least possible area of a plane region inside which a needle of length 1 can be turned a full 360 degrees. Besicovitch and Pál showed that the area can be taken arbitrarily small. In its modern form, the Kakeya problem is to estimate the fractal dimension of a “Besicovitch set” E ⊂ Rn, i.e., a set containing line segments of length 1 in all directions. There are several relevant notions of “fractal dimension”. Here, let us use the Minkowski dimension, defined in terms of coverings of E by small balls of a fixed radius δ. -
Causal Aggregation: Estimation and Inference of Causal Effects by Constraint-Based Data Fusion
Causal aggregation: estimation and inference of causal effects by constraint-based data fusion Jaime Roquero Gimenez and Dominik Rothenhäusler Department of Statistics Stanford University Stanford, CA 94305, USA Abstract Randomized experiments are the gold standard for causal inference. In experiments, usually one variable is manipulated and its effect on an outcome is measured. However, practitioners may also be interested in the effect on a fixed target variable of simultaneous interventions on multiple covariates. We propose a novel method that allows to estimate the effect of joint interventions using data from different experiments in which only very few variables are manipulated. If the joint causal effect is linear, the proposed method can be used for estimation and inference of joint causal effects, and we characterize conditions for identifiability. The proposed method allows to combine data sets arising from randomized experiments as well as observational data sets for which IV assumptions or unconfoundedness hold: we indicate how to leverage all the available causal information to efficiently estimate the causal effects in the overidentified setting. If the dimension of the covariate vector is large, we may have data from experiments on every covariate, but only a few samples per randomized covariate. Under a sparsity assumption, we derive an estimator of the causal effects in this high-dimensional scenario. In addition, we show how to deal with the case where a lack of experimental constraints prevents direct estimation of the causal effects. When the joint causal effects are non-linear, we characterize conditions under which identifiability holds, and propose a non-linear causal aggregation methodology for experimental data sets similar to the gradient boosting algorithm where in each iteration we combine weak learners trained on different datasets using only unconfounded samples. -
NSF Funds LIGO Public Education All the World's a Stage
1- Ll. en 1- 1- Ll. en en The campus community biweekly June 17, 2004, vol. 4, no. 12 NSF funds All the world's a stage ... LIGO public education The National Science Foundation has Noted Caltech announced a $5 million, five-year coop geologist dies erative agreement with Caltech and its partners in educational outreach to estab lish an Educational Outreach Center as an Robert Phillip Sharp, a leading authority on integral part of the NSF-funded Laser the surfaces of Earth and Mars, the long Interferometer Gravitational-Wave Obser time head of Caltech's geological sciences vatory (LIGO) in Livingston, Louisiana. division, and an alum, died May 25 at his The center will support programs home in Santa Barbara. He was 92. that communicate LIGO-related science Though Sharp was a renowned geolo concepts to the public, strengthen re gist in his own right, his most significant gional science teaching, and reach a role was arguably his modernization of broad audience of students in Louisiana Caltech's earth-science programs during and beyond. a time of unparalleled progress in human The project brings together research kind's knowledge of its own planet and of scientists from the LIGO Livingston Ob other worlds. Known for hiring top people, servatory, Caltech, and MIT as well as he had a strong interest in creating new educators from Southern University in interdisciplinary approaches to take advan Baton Rouge, the Louisiana Systemic tage of-the dawning age of manned and Initiatives, and the Exploratorium of San unmanned planetary exploration. Francisco. These partners provide exper Particularly noteworthy were Sharp's tise specific to LIGO science, experience support of planetary science as a vehicle in exhibit development, connections to for extending geological research to teacher development, and access to a other planets, and his contributions to statewide community of public schools. -
Bowl History
History HUSKIES History 1924 Rose Bowl Washington 14, Navy 14 January 1, 1924 eligible to catch a pass. Bryan delayed, then released and gathered in Abel’s pass, stumbling across the goal line for the touchdown. The Sherman-booted extra point made it 14–14. Washington missed a field goal “by a scant three feet” as time expired and the Huskies Washington had one last chance to win, as the Huskies drove to the 25-yard line with less settled for a 14–14 tie with the heavily favored Midshipmen of the Naval Academy in the 1924 than five minutes to play on a long pass from Abel to Wilson. Washington’s field goal attempt Rose Bowl, played before 40,000 fans. by Leonard Zeil from 24 yards out had the distance but curved left. Navy took over on downs The Huskies, coached to a 10–1 record coming into the game by third-year coach Enoch at the 20, and advanced as far as midfield when the game ended. Bagshaw, had to fight back twice, falling behind 7–0 early and later trailing 14–7 to the well- drilled Middies of Annapolis. The Naval Academy (5–1–1) used a sophisticated passing attack, Attendance a style not seen before on the West Coast, to confuse the Husky defense in the first half. Navy 40,000 completed all 11 passes it attempted in the first half, and hit 14 in a row before the Huskies managed to stop one. Navy completed 16-of-20 for the day. Scoring Navy opened the scoring at the start of the second period on a 20-yard pass from Q Team-Scoring Play (Conversion) quarterback Ira McKee to halfback Carl Cullen. -
Ten Mathematical Landmarks, 1967–2017
Ten Mathematical Landmarks, 1967{2017 MD-DC-VA Spring Section Meeting Frostburg State University April 29, 2017 Ten Mathematical Landmarks, 1967{2017 Nine, Eight, Seven, and Six Nine: Chaos, Fractals, and the Resurgence of Dynamical Systems Eight: The Explosion of Discrete Mathematics Seven: The Technology Revolution Six: The Classification of Finite Simple Groups Ten Mathematical Landmarks, 1967{2017 Five: The Four-Color Theorem 1852-1976 1852: Francis Guthrie's conjecture: Four colors are sufficient to color any map on the plane in such a way that countries sharing a boundary edge (not merely a corner) must be colored differently. 1878: Arthur Cayley addresses the London Math Society, asks if the Four-Color Theorem has been proved. 1879: A. B. Kempe publishes a proof. 1890: P. J. Heawood notes that Kempe's proof has a serious gap in it, uses same method to prove the Five-Color Theorem for planar maps. The Four-Color Conjecture remains open. 1891: Heawood makes a conjecture about coloring maps on the surfaces of many-holed tori. 1900-1950's: Many attempts to prove the 4CC (Franklin, George Birkhoff, many others) give a jump-start to a certain branch of topology called Graph Theory. The latter becomes very popular. Ten Mathematical Landmarks, 1967{2017 Five: The Four-Color Theorem (4CT) The first proof By the early 1960s, the 4CC was proved for all maps with at most 38 regions. In 1969, H. Heesch developed the two main ingredients needed for the ultimate proof, namely reducibility and discharging. He also introduced the idea of an unavoidable configuration. -
Terence Tao Becomes Patron of International Mathematical Olympiad Foundation
Terence Tao becomes Patron of International Mathematical Olympiad Foundation We are proud to announce that Terence (Terry) Tao has agreed to accept an appointment as Patron of the IMO (International Mathematical Olympiad) Foundation. The foundation exists to promote the IMO and to provide support for host countries and participants. There could be no more appropriate patron than Terence Tao. His position as one of the world’s leading mathematicians is well-known and he has always been a strong supporter of the IMO and related activities. Terence competed in the IMO in 1986 and was the youngest ever gold medallist, at the age of 12 in 1988. Born in Adelaide in 1975 of Chinese parents, Terence was educated at Terry Tao receiving his IMO Gold Blackwood High until entering Flinders University in 1989, completing medal from Prime Minister Bob his B.Sc. (Hons) in 1991 and his M.Sc. in 1992. He then began his Hawke in 1988 doctorate at Princeton University under Elias Stein, completing this in 1996. He was made an Assistant Professor at UCLA in 1996 and a Full Professor in 2000 (the youngest ever appointed by UCLA). Terence has received numerous awards and prizes, including the Salem Prize in 2000, the Bochner Prize in 2002, the Fields Medal and SASTRA Ramanujan Prize in 2006, the MacArthur Fellowship and Ostrowski Prize in 2007, the Waterman Award in 2008, the Nemmers Prize in 2010, and the Crafoord prize in 2012. Terence Tao currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society, the Australian Academy of Sciences (Corresponding Member), the National Academy of Sciences (Foreign member), and the American Academy of Arts and Sciences.