Epigenetic Silencing of Mirna-338-5P and Mirna-421

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Silencing of Mirna-338-5P and Mirna-421 Published OnlineFirst December 26, 2018; DOI: 10.1158/1078-0432.CCR-18-3230 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer Vipul Bhatia1, Anjali Yadav1, Ritika Tiwari1, Shivansh Nigam1, Sakshi Goel1, Shannon Carskadon2, Nilesh Gupta3, Apul Goel4, Nallasivam Palanisamy2, and Bushra Ateeq1 Abstract Purpose: Serine peptidase inhibitor, Kazal type-1 (SPINK1) DNA immunoprecipitation were performed on prostate overexpression defines the second most recurrent and aggres- cancer cell lines and patients' specimens. sive prostate cancer subtype. However, the underlying molec- Results: We established a critical role of miRNA-338-5p/- ular mechanism and pathobiology of SPINK1 in prostate 421 in posttranscriptional regulation of SPINK1. Ectopic cancer remains largely unknown. expression of miRNA-338-5p/-421 in SPINK1-positive cells Experimental Design: miRNA prediction tools were abrogates oncogenic properties including cell-cycle progres- employed to examine the SPINK1-30UTR for miRNA bind- sion, stemness, and drug resistance, and shows reduced tumor ing. Luciferase reporter assays were performed to confirm burden and distant metastases in a mouse model. Importantly, the SPINK1-30UTR binding of shortlisted miR-338-5p/ we show that patients with SPINK1-positive prostate cancer miR-421. Furthermore, miR-338-5p/-421–overexpressing exhibit increased EZH2 expression, suggesting its role in cancer cells (SPINK1-positive) were evaluated for onco- epigenetic silencing of miRNA-338-5p/-421. Furthermore, genic properties using cell-based functional assays and a presence of CpG dinucleotide DNA methylation marks on mouse xenograft model. Global gene expression profiling the regulatory regions of miR-338-5p/-421 in SPINK1-positive was performed to unravel the biological pathways altered prostate cancer cells and patients' specimens confirms epige- by miR-338-5p/-421. IHC and RNA in situ hybridization netic silencing. were carried out on prostate cancer patients' tissue micro- Conclusions: Our findings revealed that miRNA-338-5p/- array for SPINK1 and EZH2 expression, respectively. 421 are epigenetically silenced in SPINK1-positive prostate Chromatin immunoprecipitation assay was performed cancer, although restoring the expression of these miRNAs to examine EZH2 occupancy on the miR-338-5p/-421– using epigenetic drugs or synthetic mimics could abrogate regulatory regions. Bisulfite sequencing and methylated SPINK1-mediated oncogenesis. Introduction with this disease (1–3). Majority of these patients harbor gene rearrangements between members of the E26 transformation– Prostate cancer is characterized by extensive molecular hetero- specific(ETS) transcription factor family and the androgen-reg- geneity and varied clinical outcomes (1). Multiple molecular ulated transmembrane protease serine 2 (TMPRSS2), most recur- subtypes involving recurrent genetic rearrangements, DNA copy rent (50%) being TMPRSS2-ERG, involving the v-ets erythro- number alterations, and somatic mutations have been associated blastosis virus E26-oncogene homolog (ERG; refs. 3, 4). The TMPRSS2-ERG–encoded ERG transcription factor is known to drive cell invasion and metastases, DNA damage in vitro, and focal 1Molecular Oncology Lab, Department of Biological Sciences and Bioengineer- precancerous prostatic intraepithelial neoplasia (PIN) lesions in ing, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India. 2Vatti- transgenic mice (5, 6). kuti Urology Institute, Department of Urology, Henry Ford Health System, While TMPRSS2-ERG fusion forms the most frequent molec- 3 Detroit, Michigan. Department of Pathology, Henry Ford Health System, ular subtype, a significant subset of ETS-negative (–) prostate 4 Detroit, Michigan. Department of Urology, King George's Medical University, cancer show overexpression of serine peptidase inhibitor, Kazal Lucknow, Uttar Pradesh, India. type-1 (SPINK1) in approximately 10%–15% of the total patients Note: Supplementary data for this article are available at Clinical Cancer with prostate cancer, a distinct subtype defined by overall higher Research Online (http://clincancerres.aacrjournals.org/). Gleason score, shorter progression-free survival, and biochemical V. Bhatia and A. Yadav contributed equally to this article. recurrence (7–9). SPINK1 promotes cell proliferation and inva- Corresponding Author: Bushra Ateeq, Molecular Oncology Lab, Department of sion through autocrine/paracrine signaling and mediates its onco- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, genic effects, in part, through EGFR interaction by activating Kanpur, Uttar Pradesh 208016, India. Phone: 91-512-259-4083; Fax: 91-512-259- downstream signaling. Monoclonal EGFR antibody administered 4010; E-mail: [email protected] in SPINK1-positive xenografted mice showed only a marginal doi: 10.1158/1078-0432.CCR-18-3230 decrease in tumor burden, suggesting involvement of EGFR- Ó2018 American Association for Cancer Research independent oncogenic pathways (10). www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst December 26, 2018; DOI: 10.1158/1078-0432.CCR-18-3230 Bhatia et al. Translational Relevance Materials and Methods Human prostate cancer specimens We establish a regulatory model involving the functional Fresh-frozen prostate cancer specimens used in this study interplay between SPINK1, miRNA-338-5p/miRNA-421, were procured from King George's Medical University (KGMU, and EZH2, thereby revealing hitherto unknown mechanism Lucknow, India). Clinical specimens were collected after of SPINK1 upregulation in SPINK1-positive prostate cancer obtaining written informed consent and institutional review subtype. Our findings provide a strong rationale for the board approvals from KGMU and Indian Institute of Technol- development of potential therapeutic strategies for SPINK1- ogy Kanpur (Kanpur, India). A total of 20 prostate cancer positive malignancies. We demonstrate that restoring specimens were selected for this study based on SPINK1 and miRNA-338-5p/miRNA-421 expression using epigenetic TMPRSS2-ERG status, confirmed by qPCR, IHC, and FISH (4). drugs, including DNA methyltransferase (DNMT) inhibitors Tissue microarrays (TMA) comprising prostate cancer speci- in combination with histone deacetylase (HDAC) or histone mens (n ¼ 238) were obtained from Department of Pathology, lysine methyltransferase (HKMT) inhibitors or miRNA syn- Henry Ford Health System (Detroit, MI), after getting written thetic mimics in SPINK1-positive prostate cancer, abrogates informed consent and institutional review board approval. All SPINK1-mediated oncogenicity. The major findings of this patients' specimens used in this study were collected in accor- study will not only advance the prostate cancer field, but dance with the Declaration of Helsinki. TMAs were stained for also be valuable for treatment and disease management of SPINK1 and EZH2 by performing IHC and RNA in situ hybrid- other SPINK1-positive malignancies. ization (RNA-ISH), respectively. Mouse xenograft studies For mouse xenograft studies, 5- to 6-week-old NOD.CB17- scid Although, genomic events such as gene rearrangements and Prkdc /J (NOD/SCID) male mice (Jackson Laboratory) were n ¼ somatic mutations constitute most recurrent oncogenic aberra- randomized into three groups ( 8 for each experimental tions,manycouldalsobeattributedtoepigeneticalterations. condition). All procedures involving mice were approved by Earlier studies have shown that aberrant expression of enhancer the Committee for the Purpose of Control and Supervision of of zeste homolog 2 (EZH2) owing to genomic loss of miRNA- Experiments on Animals (CPCSEA) and conform to all regu- 101 (11) or hypermethylation of miR-26a (12) constitutes a latory standards of the Institutional Animal Ethics Committee common regulatory mechanism across several solid cancers. of the Indian Institute of Technology Kanpur. Detailed meth- EZH2, being the key component of the polycomb-repressive odology of the xenograft studies is provided in the Supple- complex 2 (PRC2) mediates trimethylation on the histone 3 mentary Methods and Supplementary Table S1. lysine 27 (H3K27me3), leading to gene silencing (13). How- 0 ever, phosphorylated form of EZH2 is known to switch its miRNA 3 UTR SPINK1 luciferase reporter assay 0 0 function from polycomb repressor to transcriptional coactiva- Full-length SPINK1 3 untranslated region (3 UTR) wild- tor of androgen receptor in castration-resistant prostate cancers type and mutant with altered residues in the binding sites of (CRPC; ref. 14). Moreover, recent studies have shown PRC2 miR-338-5p and miR-421 was cloned in Firefly/Renilla Dual- epigenetically suppresses the expression of several tumor-sup- Luciferase reporter vector pEZX-MT01 (GeneCopoeia). Cells pressive miRNAs such as, miR-181a/b, miR-200b/c, and miR- were seeded in a 24-well plate at 30%–40% confluency and 203, while these miRNAs in turn directly target PRC1 members, cotransfected with 30 pmol of miRNA mimics along with 25 ng namely BMI1 and RING2, thereby reinforcing the repressive of pEZX-MT01 constructs using Lipofectamine RNAiMax (Invi- molecular circuitry (15). trogen). Luciferase assay was performed using Dual-Glo Lucif- Although overexpression of SPINK1 forms the second most erase Assay (Promega) 24 hours after the second transfection. prevalent
Recommended publications
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Urinary Biomarkers for the Detection of Prostate Cancer in Patients with High-Grade Prostatic Intraepithelial Neoplasia
    The Prostate Urinary Biomarkers for the Detection of Prostate Cancer in Patients With High-Grade Prostatic Intraepithelial Neoplasia Tamara Sequeiros,1 Juan M. Bastaros, 2 Milagros Sanchez, 1 Marina Rigau,1 Melania Montes,1 Jose Placer,2 Jaques Planas,2 Ines de Torres,3 Jaume Reventos, 1,4,5 D. Michiel Pegtel,6 Andreas Doll,1,4 Juan Morote,1,2 and Mireia Olivan1* 1Group of Biomedical Research in Urology, Vall d’Hebron Research Institute (VHIR) and Universitat Autonoma de Barcelona (UAB), Barcelona, Spain 2Department of Urology, Vall d’Hebron University Hospital and Universitat Autonoma de Barcelona (UAB), Barcelona, Spain 3Department of Pathology, Vall d’Hebron University Hospital and Universitat Autonoma de Barcelona (UAB), Barcelona, Spain 4Departament de Ciencies Basiques, Universitat Internacional de Catalunya, Barcelona, Spain 5IDIBELL- Bellvitge Biomedical Research Institute, Barcelona, Spain 6Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands INTRODUCTION. High-grade prostatic intraepithelial neoplasia (HGPIN) is a recognized precursor stage of PCa. Men who present HGPIN in a first prostate biopsy face years of active surveillance including repeat biopsies. This study aimed to identify non-invasive prognostic biomarkers that differentiate early on between indolent HGPIN cases and those that will transform into actual PCa. METHODS. We measured the expression of 21 candidate mRNA biomarkers using quantitative PCR in urine sediment samples from a cohort of 90 patients with initial diagnosis of HGPIN and a posterior follow up of at least two years. Uni- and multivariate statistical analyses were applied to analyze the candidate biomarkers and multiplex models using combinations of these biomarkers.
    [Show full text]
  • In Prostate Cancer
    l ch cina em di is e tr M y Shen et al., Med chem 2014, 4:11 Medicinal chemistry DOI: 10.4172/2161-0444.1000220 ISSN: 2161-0444 Revie Article Open Access Roles of Serine Protease Inhibitor Kazal type 1 (SPINK1) in Prostate Cancer Chengwu Shen1, Jing Zhang1, Mei Qi2, Yannicca WYChang3 and Bo Han2,4* 1Department of Pharmacy, Shandong Provincial Hospital, Jinan 250021 China 2Department of Pathology, School of Medicine, Shandong University, Jinan 250012, China 3Department of Health and Disease and Psychology, University of Tornoto, Markham, Canada 4Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China Abstract Altered genes that play a driving role in cancer development can often serve as specific diagnostic markers, criteria of molecular classification and therefore potential therapeutic targets. Serine protease inhibitor Kazal type 1 (SPINK1), also known as pancreatic secretory trypsin inhibitor or tumor-associated trypsin inhibitor, encodes a 56 amino acid secreted peptide, and its normal function is thought to be the inhibition of serine proteases such as trypsin. Recent studies have indicated marked overexpression of SPINK1 defines an aggressive molecular subtype of ETS (erythroblastosis virus E26 transformation-specific) fusion-negative prostate cancer ((PCa) patients. SPINK1 may act as an autocrine growth factor and promotes PCa growth and invasion. Most recently, we suggested that SPINK1 induces epithelial-mesenchymal transition (EMT) through EGFR signaling pathway in PCa. The association between SPINK1 overexpression and poor prognosis in PCa has been reported. Notably, SPINK1 might be a novel extracellular therapeutic target in a subset of high-grade PCa patients. In this review, we will summarize the current understanding of SPINK1 involving its role in PCa biology, association with prognosis as well as perspective in therapy from the pathologist's point of view.
    [Show full text]
  • Association of SPINK1 Expression and TMPRSS2:ERG Fusion with Prognosis in Endocrine-Treated Prostate Cancer
    Published OnlineFirst May 4, 2010; DOI: 10.1158/1078-0432.CCR-09-2505 Clinical Imaging, Diagnosis, Prognosis Cancer Research Association of SPINK1 Expression and TMPRSS2:ERG Fusion with Prognosis in Endocrine-Treated Prostate Cancer Katri A. Leinonen1, Teemu T. Tolonen1,3, Hazel Bracken1, Ulf-Håkan Stenman4, Teuvo L.J. Tammela2, Outi R. Saramäki1, and Tapio Visakorpi1 Abstract Purpose: The aim of the study was to examine whether TMPRSS2:ERG fusion or SPINK1 protein expres- sion is associated with hormone responsiveness of prostate cancer and can thus be used as a biomarker. Experimental Design: Diagnostic needle biopsies from prostate cancer patients primarily treated by endocrine therapy were evaluated for TMPRSS2:ERG fusion with fluorescence in situ hybridization and SPINK1 protein expression with immunohistochemistry. Results: The frequency of TMPRSS2:ERG fusion in 178 biopsies of hormonally treated patients was 34%. Of the fusion-positive cases, 71% showed deletion between the two genes, and 23% showed gain of the fusion. The fusion was associated with high Ki-67 staining (P = 0.001), age at diagnosis (P = 0.024), and tumor area (P = 0.006), but not with Gleason score, T stage, M stage, prostate-specific antigen (PSA), or progression-free survival. Strong positive SPINK1 expression was found in 11% (21 of 186) of the biopsies. SPINK1-positive cases had significantly shorter progression-free survival compared with SPINK1-negative cases (P = 0.001). The expression was not associated with any other clinicopathologic variables studied. In a multivariate analysis, SPINK1 expression showed independent prognostic value, with a relative risk of 2.3 (95% confidence interval, 1.1-4.6).
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Loss of MGA Repression Mediated by an Atypical Polycomb Complex
    RESEARCH ARTICLE Loss of MGA repression mediated by an atypical polycomb complex promotes tumor progression and invasiveness Haritha Mathsyaraja1, Jonathen Catchpole1, Brian Freie1, Emily Eastwood2, Ekaterina Babaeva1, Michael Geuenich1, Pei Feng Cheng1, Jessica Ayers3, Ming Yu3, Nan Wu2, Sitapriya Moorthi2, Kumud R Poudel1, Amanda Koehne4, William Grady3,5, A McGarry Houghton2,3, Alice H Berger2, Yuzuru Shiio6, David MacPherson2*, Robert N Eisenman1* 1Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States; 2Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, United States; 3Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States; 4Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, United States; 5Department of Medicine, University of Washington School of Medicine, Seattle, United States; 6Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center, San Antonio, United States Abstract MGA, a transcription factor and member of the MYC network, is mutated or deleted in a broad spectrum of malignancies. As a critical test of a tumor suppressive role, we inactivated Mga in two mouse models of non-small cell lung cancer using a CRISPR-based approach. MGA loss significantly accelerated tumor growth in both models and led to de-repression of non-canonical Polycomb ncPRC1.6 targets, including genes involved in metastasis and meiosis. Moreover, MGA deletion in human lung adenocarcinoma lines augmented invasive capabilities. We further show that MGA-MAX, E2F6, and L3MBTL2 co-occupy thousands of promoters and that MGA stabilizes these ncPRC1.6 subunits. Lastly, we report that MGA loss also induces a pro-growth effect in *For correspondence: human colon organoids.
    [Show full text]
  • INVESTIGATION INTO POSSIBLE MUTATIONS of the SPINK1 GENE AS a CAUSE of HEREDITARY PANCREATITIS in the MINIATURE SCHNAUZER a Diss
    INVESTIGATION INTO POSSIBLE MUTATIONS OF THE SPINK1 GENE AS A CAUSE OF HEREDITARY PANCREATITIS IN THE MINIATURE SCHNAUZER A Dissertation by MICAH ANDREW BISHOP Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Jörg Steiner Committee Members, Jan Suchodolski Audrey Cook Roy Pool David Twedt Head of Department, Roger Smith December 2015 Major Subject: Veterinary Microbiology Copyright 2015 Micah Bishop ABSTRACT The Miniature Schnauzer has been anecdotally reported to have a hereditary predisposition to the development of pancreatitis. The aims of this study were to establish a true breed predisposition for the disease and to investigate a potential genetic etiology. The first part of this study investigated breed predisposition for the development of pancreatitis. Miniature Schnauzers were found to have an odds ratio of 1.23 (P = 0.0240) for having an increased cPLI (as measured by an in-house ELISA or by Spec cPL®) serum concentration compared to the population as a whole. The second part of this study investigated the SPINK1 gene in Miniature Schnauzers with and without evidence of pancreatitis. Three variants were found in the gene and Miniature Schnauzers that were homozygous for the variants had an odds ratio of 25 (P = 0.0067) for having clinical and biochemical evidence of pancreatitis compared to healthy individuals. The third part of the study examined the entire canine genome using SNP scanning to investigate other genes or regions that may be associated with pancreatitis in the Miniature Schnauzer.
    [Show full text]
  • Markers for Detection of Prostate Cancer
    Cancers 2010, 2, 1125-1154; doi:10.3390/cancers2021125 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Markers for Detection of Prostate Cancer Raymond A. Clarke 1, Horst J. Schirra 2, James W. Catto 3, Martin F. Lavin 4,5 and Robert A. Gardiner 5,* 1 Prostate Cancer Institute, Cancer Care Centre, St George Hospital Clinical School of Medicine, University of New South Wales, Kogarah, NSW 2217, Australia; E-Mail: [email protected] 2 School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD, 4072, Australia; E-Mail: [email protected] 3 Academic Urology Unit and Institute for Cancer Studies, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK; E-Mail: [email protected] 4 Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, QLD 4029, Australia; E-Mail: [email protected] 5 University of Queensland Centre for Clinical Research, Brisbane, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 22 March 2010; in revised form: 2 June 2010 / Accepted: 3 June 2010 / Published: 4 June 2010 Abstract: Early detection of prostate cancer is problematic, not just because of uncertainly whether a diagnosis will benefit an individual patient, but also as a result of the imprecise and invasive nature of establishing a diagnosis by biopsy. Despite its low sensitivity and specificity for identifying patients harbouring prostate cancer, serum prostate specific antigen (PSA) has become established as the most reliable and widely-used diagnostic marker for this condition. In its wake, many other markers have been described and evaluated.
    [Show full text]
  • The Roles of Serine Protease Inhibitor Kazal Type 1 (SPINK1) in Pancreatic Diseases
    Exp. Anim. 60(5), 433–444, 2011 —Review— Review Series: Frontiers of Model Animals for Human Diseases The Roles of Serine Protease Inhibitor Kazal Type 1 (SPINK1) in Pancreatic Diseases Masaki OHMURAYA1, 2) and Ken-ichi YAMAMURA2) 1)Priority Organization for Innovation and Excellence and 2)Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan Abstract: Serine protease inhibitor Kazal type 1 (SPINK1) was originally identified as a trypsin inhibitor by Kazal et al. in 1948. SPINK1 is strongly elevated in pancreatitis and the elevation correlates with the severity of disease. In 2000, mutations in the SPINK1 gene were shown to be associated with chronic pancreatitis. Since then, there have been many reports on association between mutations in the SPINK1 genes and patients with pancreatitis. In 1982, SPINK1 was shown to be identical to tumor associated trypsin inhibitor (TATI). In addition, sequence similarities were detected between human epidermal growth factor (EGF) and human SPINK1 in 1983. Actually, SPINK1 was shown to stimulate growth of several cell lines including cancer cells in 1985. Recent clinical studies showed that high levels of SPINK1 protein in serum or urine were associated with adverse outcome in various cancer types. However, there was little evidence that showed in vivo function of SPINK1. Surprisingly, mice deficient in Spink3 (a mouse homologue gene of human SPINK1) showed excessive autophagy, but not pancreatitis in the exocrine pancreas, leading to autophagic cell death. We also demonstrated that SPINK1 acts as a growth factor through EGFR signaling. These data indicate that the role of the SPINK1 is not just as a trypsin inhibitor, but also as a growth factor as well as a negative regulator of autophagy.
    [Show full text]
  • The Role of Hypoxia in Inflammatory Disease (Review)
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 859-869, 2015 The role of hypoxia in inflammatory disease (Review) JOHN BIDDLESTONE1,2*, DANIEL BANDARRA1* and SONIA ROCHA1 1Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH; 2Plastic Surgery Training Programme, NHS Scotland, Scotland, UK Received January 20, 2015; Accepted January 27, 2015 DOI: 10.3892/ijmm.2015.2079 Abstract. Mammals have developed evolutionarily conserved 1. Introduction programs of transcriptional response to hypoxia and inflam- mation. These stimuli commonly occur together in vivo and Oxygen (O2) constitutes 20.8% of the atmospheric air, and there is significant crosstalk between the transcription factors is the third-most abundant element in the universe, after that are classically understood to respond to either hypoxia hydrogen and helium. It is not only a key component of all or inflammation. This crosstalk can be used to modulate the major biomolecules of living organisms, but also a key overall response to environmental stress. Several common constituent of inorganic compounds. Oxygen homeostasis is disease processes are characterised by aberrant transcrip- crucially important to maintain the survival of all vertebrate tional programs in response to environmental stress. In this species (1). Therefore, organisms developed a way to coor- review, we discuss the current understanding of the role of the dinate the oxygen levels in the intracellular compartments hypoxia-responsive (hypoxia-inducible factor) and inflamma- in order to maintain homeostasis. When these mechanisms tory (nuclear factor-κB) transcription factor families and their fail, and the intracellular concentration of oxygen decreases, crosstalk in rheumatoid arthritis, inflammatory bowel disease a stress condition called hypoxia is created.
    [Show full text]
  • A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-To-Mesenchymal Transition
    Published OnlineFirst September 29, 2015; DOI: 10.1158/1078-0432.CCR-15-0876 Cancer Therapy: Preclinical Clinical Cancer Research A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition Milena P. Mak1,2, Pan Tong3, Lixia Diao3, Robert J. Cardnell1, Don L. Gibbons1,4, William N. William1, Ferdinandos Skoulidis1, Edwin R. Parra5, Jaime Rodriguez-Canales5, Ignacio I.Wistuba5, John V.Heymach1, John N.Weinstein3, Kevin R.Coombes6, Jing Wang3, and Lauren Averett Byers1 Abstract Purpose: We previously demonstrated the association between EMT markers across diverse tumor types and identifies differences epithelial-to-mesenchymal transition (EMT) and drug response in in drug sensitivity and global molecular alterations at the DNA, lung cancer using an EMT signature derived in cancer cell lines. RNA, and protein levels. Among those changes associated with Given the contribution of tumor microenvironments to EMT, we EMT, pathway analysis revealed a strong correlation between EMT extended our investigation of EMT to patient tumors from 11 and immune activation. Further supervised analysis demonstrat- cancer types to develop a pan-cancer EMT signature. ed high expression of immune checkpoints and other druggable Experimental Design: Using the pan-cancer EMT signature, we immune targets, such as PD1, PD-L1, CTLA4, OX40L, and PD-L2, conducted an integrated, global analysis of genomic and prote- in tumors with the most mesenchymal EMT scores. Elevated omic profiles associated with EMT across 1,934 tumors including PD-L1 protein expression in mesenchymal tumors was confirmed breast, lung, colon, ovarian, and bladder cancers. Differences in by IHC in an independent lung cancer cohort.
    [Show full text]
  • And No-Tumor Hepatitis/Cirrhotic Liver Tissues
    Tumor Biol. DOI 10.1007/s13277-010-0050-8 RESEARCH ARTICLE AFP computational secreted network construction and analysis between human hepatocellular carcinoma (HCC) and no-tumor hepatitis/cirrhotic liver tissues Lin Wang & Juxiang Huang & Minghu Jiang & Xiguang Zheng Received: 29 March 2010 /Accepted: 30 April 2010 # International Society of Oncology and BioMarkers (ISOBM) 2010 Abstract Alpha-fetoprotein (AFP) computational secreted cell surface receptor linked signal transduction, neuroactive network construction and analysis of human hepatocellular ligand–receptor interaction, cell–cell signaling, and pancreas carcinoma (HCC) is very useful to identify novel markers and (only in no-tumor hepatitis/cirrhotic liver tissues terms), the potential targets for prognosis and therapy. By integration of condition which is vital to invasion of HCC. Our result gene regulatory network infer and the database for annota- demonstrated that common terms in both no-tumor hepatitis/ tion, visualization, and integrated discovery, we identified and cirrhotic liver tissues and HCC include secreted extracellular constructed significant molecule AFP secreted network from region, extracellular region part, extracellular space, signal 25 no-tumor hepatitis/cirrhotic liver tissues and 25 HCC peptide, signal, disulfide bond, glycosylation site N-linked patients in the same GEO Dataset GSE10140-10141. Our (GlcNAc...), and glycoprotein, and these terms are less result verified AFP secreted module in the upstream of no- relative to invasion; therefore, we deduced the weaker AFP tumor hepatitis/cirrhotic liver tissues (AMELY, LCN2,and secreted network in HCC consistent with our number REG3A activation; DKK1, SFRP4,andSPINK1 inhibition) computation. We predicted AFP high expression localization and its downstream (PRSS1, REG3A,andTSHB activation; within cells of HCC and without secretion to extracellular AMELY and DKK1 inhibition), and also in the upstream of matrix.
    [Show full text]