Whole Genome Sequencing and Forensics Genomics

Total Page:16

File Type:pdf, Size:1020Kb

Whole Genome Sequencing and Forensics Genomics Whole Genome Sequencing and forensics genomics Angers, A., Drabek, J., Fabbri, M., Petrillo, M. and Querci, M. 2021 EUR 30766 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Maddalena Querci Address: Via E. Fermi, 2749 I-21027 Ispra (VA), Italy Email: [email protected] Tel.: +39 033278-9308 EU Science Hub https://ec.europa.eu/jrc JRC125734 EUR 30766 EN PDF ISBN 978-92-76-40265-7 ISSN 1831-9424 doi:10.2760/864087 Luxembourg: Publications Office of the European Union, 2021 © European Union, 2021 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders. All content © European Union, 2021, except: Cover image: ©Tarlila - stock.adobe.com Figures 2, 3, 4, 5 and 6: Author: Halina Šimková (https://www.slideserve.com/ronni/slide-pool-forenzn-genetiky-roz-en-soubor-obrazov-ch- sch-mat-k-publikaci) Figure 9: Source: MyHeritage (adapted and used by authors with the permission of the owner) Figure 10: adapted by authors with the permission of the author Latanya Sweeney, (https://thedatamap.org/map2013/index.php) Figure 11: Source: https://www.statista.com/chart/20566/personal-data-breaches-notified-per-eea-jurisdiction/ How to cite this report: Angers, A., Drabek, J., Fabbri, M., Petrillo, M. and Querci, M., Whole Genome Sequencing and forensics genomics, EUR 30766 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-40265-7, doi:10.2760/864087, JRC125734. Contents Abstract .............................................................................................................................................................................................................................................................. 4 1 Nucleic acids as the genotyping target ......................................................................................................................................................................... 5 1.1 Nuclear and mitochondrial genome .................................................................................................................................................................... 5 1.2 Ways of genetic information transfer ............................................................................................................................................................... 5 1.3 DNA as differentiation marker ................................................................................................................................................................................. 8 1.4 Human transcriptome ...................................................................................................................................................................................................... 9 1.5 Human epigenome ............................................................................................................................................................................................................. 9 1.6 Human microbiome ........................................................................................................................................................................................................ 10 2 Technology of genotyping ...................................................................................................................................................................................................... 11 2.1 DNA profiling by STR genotyping ........................................................................................................................................................................ 11 2.2 DNA genotyping by microarray chips .............................................................................................................................................................. 12 2.3 DNA genotyping by sequencing ........................................................................................................................................................................... 12 • Speed ......................................................................................................................................................................................................................... 13 • Databases ............................................................................................................................................................................................................. 14 • DNA input ............................................................................................................................................................................................................... 14 • Initial investment ............................................................................................................................................................................................ 14 3 Process of forensic genetics identification ............................................................................................................................................................. 16 3.1 Comparison of DNA ........................................................................................................................................................................................................ 16 3.2 Quality of DNA data and profiling process ................................................................................................................................................ 17 3.3 Standards, certification of practitioners, and accreditation of laboratories (Wilson-Wilde 2018) ........... 18 3.4 Codes of conduct, the best laboratory practice ..................................................................................................................................... 18 3.5 Logical, Bayesian way of evidence interpretation ............................................................................................................................... 18 4 Genomic Data is Big Data ...................................................................................................................................................................................................... 20 4.1 Big Data bears two risks: data silos and data misuse ..................................................................................................................... 20 4.2 Genealogical, familial, and biogeographical searches using consumer genetics databases ......................... 21 4.3 DNA as phenotypic or biometric data ............................................................................................................................................................. 26 4.4 DNA as health data ........................................................................................................................................................................................................ 30 5 Concerns ................................................................................................................................................................................................................................................ 41 6 Summary with recommendations ................................................................................................................................................................................... 45 References .................................................................................................................................................................................................................................................... 48 Glossary of terms ................................................................................................................................................................................................................................... 55 List of abbreviations and definitions ...................................................................................................................................................................................
Recommended publications
  • Ethical Dimensions of NGS Technologies to Criminal Investigations
    ETHICAL DIMENSIONS OF THE APPLICATION OF NEXT GENERATION SEQUENCING TECHNOLOGIES TO CRIMINAL INVESTIGATIONS Author: National DNA Database Ethics Group Date: March 2017 1.0 Introduction 1.1 Next Generation Sequencing (NGS) is a term used to describe DNA sequencing technologies whereby multiple pieces of DNA are sequenced in parallel. This allows large sections of the human genome to be sequenced rapidly. The name is a catch- all-phrase that refers to high-throughput sequencing rather than the previous Sanger sequencing technology, which was much slower. NGS is also known as Massive Parallel Sequencing and the terms are often used interchangeably. Within this document the term NGS refers to technologies that provide more wide-ranging information than the standard DNA short tandem repeat (STR) profiling techniques that measure the number of repeats at a specific region of non-coding DNA within an autosomal chromosome. 1.2 NGS sequencing technologies have developed rapidly over the past decade while the costs associated with sequencing have declined. Whilst need and utility, and not merely the availability and affordability of NGS technologies, should be the driver for their introduction into criminal investigations, declining costs increase the feasibility of their introduction. It is therefore timely that the ethical issues associated with the application of NGS in criminal investigations are considered. In this document, the Ethics Group (EG) provides an outline of the NGS technologies that are likely to become available in the next 10 years and a map (albeit not yet an in-depth discussion) of the ethical challenges associated with the application of these technologies for forensic purposes.
    [Show full text]
  • The Canada's History Beginner's Guide to Genetic
    THE CANADA’S HISTORY BEGINNER’S GUIDE TO GENETIC GENEALOGY Read in sequence or browse as you see fit by clicking on any navigation item below. Introduction C. How to proceed A. To test or not Testing strategies for beginners Reasons for testing Recovery guide for those who tested and were underwhelmed Bogus reasons for not testing Fear of the test D. Case studies “The tests are crap” Confirming a hypothesis with autosomal DNA Price Refuting a hypothesis with autosomal DNA Substantive reasons for not testing Confirming a hypothesis with Y DNA Privacy concerns Developing (and then confirming) a hypothesis with Unexpected findings autosomal DNA Developing a completely unexpected hypothesis from B. The ABCs of DNA testing autosomal DNA The four major testing companies (and others) Four types of DNA and three major genetic genealogy tests E. Assorted observations on interpreting DNA tests Mitochondrial DNA (mtDNA) Y DNA F. More resources Autosomal DNA (atDNA) Selected recent publications X DNA Basic information about genetic genealogy Summarizing the tests Blogs by notable genetic genealogists (a selective list) Tools and utilities © 2019 Paul Jones The text of this guide is protected by Canadian copyright law and published here with permission of the author. Unless otherwise noted, copyright of every image resides with the image’s owner. You should not use any of these images for any purpose without the owner’s express authorization unless this is already granted in a cited license. For further information or to report errors or omissions, please contact Paul Jones. CANADASHISTORY.CA ONLINE SPECIAL FEATURE 2019 1 Introduction The “bestest best boy in the land” recently had his DNA tested.
    [Show full text]
  • Evaluation of Openarray™ As a Genotyping Method for Forensic DNA Phenotyping and Human Identification
    G C A T T A C G G C A T genes Article Evaluation of OpenArray™ as a Genotyping Method for Forensic DNA Phenotyping and Human Identification Michele Ragazzo 1, Giulio Puleri 1, Valeria Errichiello 1, Laura Manzo 1, Laura Luzzi 1 , Saverio Potenza 2 , Claudia Strafella 1,3 , Cristina Peconi 3, Fabio Nicastro 4 , Valerio Caputo 1 and Emiliano Giardina 1,3,* 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; [email protected] (M.R.); [email protected] (G.P.); [email protected] (V.E.); [email protected] (L.M.); [email protected] (L.L.); [email protected] (C.S.); [email protected] (V.C.) 2 Department of Biomedicine and Prevention, Section of Legal Medicine, Social Security and Forensic Toxicology, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] 3 Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; [email protected] 4 Austech, 00153 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: A custom plate of OpenArray™ technology was evaluated to test 60 single-nucleotide polymorphisms (SNPs) validated for the prediction of eye color, hair color, and skin pigmentation, and for personal identification. The SNPs were selected from already validated subsets (Hirisplex-s, Precision ID Identity SNP Panel, and ForenSeq DNA Signature Prep Kit). The concordance rate and call rate for every SNP were calculated by analyzing 314 sequenced DNA samples. The sensitivity of the assay was assessed by preparing a dilution series of 10.0, 5.0, 1.0, and 0.5 ng.
    [Show full text]
  • About the AAFS
    American Academy of Forensic Sciences 410 North 21st Street Colorado Springs, Colorado 80904 Phone: (719) 636-1100 Email: [email protected] Website: www.aafs.org @ AAFS Publication 20-2 Copyright © 2020 American Academy of Forensic Sciences Printed in the United States of America Publication Printers, Inc., Denver, CO Typography by Kathy Howard Cover Art by My Creative Condition, Colorado Springs, CO WELCOME LETTER Dear Attendees, It is my high honor and distinct privilege to welcome you to the 72nd AAFS Annual Scientific Meeting in Anaheim, California. I would like to thank the AAFS staff, the many volunteers, and everyone else who have worked together to create an excellent program for this meeting with the theme Crossing Borders. You will have many opportunities to meet your colleagues and discuss new challenges in the field. There are many workshops and special sessions that will be presented. The Interdisciplinary and Plenary Sessions will provide different views in forensic science—past, present, and future. The Young Forensic Scientists Forum will celebrate its 25th Anniversary and is conducting a workshop related to the meeting theme. More than 1,000 presentations are scheduled that will provide you with more insight into the developments in forensic science. The exhibit hall, always interesting to explore, is where you will see the latest forensic science equipment, technology, and literature. The theme Crossing Borders was chosen by me and my colleagues at the Netherlands Forensic Institute (NFI). We see many definitions of crossing borders in forensic science today. For the 2020 meeting, six words starting with the letters “IN” are included in the theme.
    [Show full text]
  • Forensic DNA Phenotyping for Degraded Samples
    Forensic DNA Phenotyping for Degraded Samples Ronak Hassani Nejad, Steen Harsten, and Jason Moore British Colombia Institution of Technology 9. A threshold of higher or equal to 0.7 was considered when deter- Abstract mining the final eye color predictions. 10. For hair color predictions, the highest p-value among the 4 color Forensic DNA phenotyping (FDP) is a novel technique that can assist category and the shade color was considered in final determina- the investigation by predicting a person of interest’s external visible tion of hair color. characteristics (EVCs) and phenotypes such as eye, hair, and skin col- our (Walsh, 2013). Several DNA markers with the prediction ability Results for these EVCs are recognized and various commercial and non- commercial tools were developed for practical use in forensic labora- The majority of samples had a p-value above 0.7 for all of the tests of tories. the experiment in eye colors even at 16% (22 samples out of 30) (Figure 3). This study investigates the compatibility of the Verogen Universal Analysis System (UAS) with the HIrisPlex Webtool. This study also tests the HIrisPlex Webtool’s reliability to generate accurate pheno- typing predictions for degraded samples through a series of tests in which we intentionally created degraded samples by deleting SNP data from the DNA profile. For p-values resulted for brown and blond hair color categories, there is a noticeable fluctuation between the tests (Figure 8). This fluctuation indicates that some individual SNPs have more predic- Introduction tive power than others. Eye color prediction results had less predic- tion fluctuations (figure 7) than hair colour.
    [Show full text]
  • Phenotype Report Case #91-2200
    Snapshot Prediction Results Phenotype Report Case #91-2200 Contact: Lt. Michael Buffington League City Police Dept. (281) 338-8220 Sex: Female♀ Age: Unknown (Shown at age 25) Body Mass: Unknown (Shown at BMI 22, Normal) Ancestry: Western European Likely Family Origin: Louisiana 10.9 NOT: Brown / Dark Brown Skin Color (97.8% confidence) Fair / Light Brown (74.2% confidence) 68.4 NOT: Blue / Black Eye Color (96.9% confidence) Hazel / Green (86.2% confidence) 28.7 NOT: Red / Black Hair Color (92.1% confidence) Brown / Blond (92.1% confidence) Freckles 40.0 Zero / Few (70.2% confidence) © 2018 Parabon NanoLabs, Inc. All rights reserved. https://Parabon-NanoLabs.com/Snapshot Investigators Seek Public’s Help Identifying a Homicide Victim With Ties to Louisiana For Immediate Release: League City Police Use New DNA Methods in Attempt to Identify 1991 Female Murder Victim League City, Texas – Investigators from the League City Police Department are seeking the public’s help in identifying the skeletal remains of a homicide victim from a 1991 “Calder Road” cold case. Detectives are hoping that recent scientific advancements in the field of forensic DNA analysis will generate leads and help identify the woman whose body was found on September 8, 1991, in League City, Galveston County, Texas. League City investigators recently employed Parabon NanoLabs (Parabon), a DNA technology company in Virginia, to predict the physical appearance and ancestry of the unidentified woman using a new method of forensic DNA analysis called DNA phenotyping. Parabon’s Snapshot® DNA Phenotyping software analyzed the unidentified woman’s DNA and made predictions about her eye color, hair color, skin color, freckling, and face shape.
    [Show full text]
  • Discovering Unknown Medieval Descents : a Genetic Approach – Medieval Genealogy for the Masses Graham S Holton
    Discovering unknown medieval descents : a genetic approach – medieval genealogy for the masses Graham S Holton Abstract Genetic genealogy, combining the use of documentary evidence with DNA test results, holds the potential to reveal previously unknown medieval descents for those with little documentary evidence of their ancestry. The work undertaken as part of the Battle of Bannockburn and the Declaration of Arbroath Family History Projects has developed methodologies to advance studies of this nature which are described in this article. Covering various aspects of the process including ethical issues, the role of documentary evidence and appropriate types of DNA testing, the article includes several case studies. The article argues that genetic genealogy can provide a gateway to medieval genealogy for the masses. This article examines a topic which has been central to the work we have been carrying out at Strathclyde University since 2013, as part firstly of the Battle of Bannockburn Family History Project1 and now the Declaration of Arbroath Family History Project2. Clearly everyone living today has medieval descents. Most of these are unknown, but many will be from landed gentry, noble and even royal families. This possibility provides the potential for uncovering these unknown medieval descents. How we can go about this is what I will introduce to you here. I will focus on methodologies for tracing medieval descents, based on the experience of the Battle of Bannockburn Family History Project and the Declaration of Arbroath Family History Project. These Projects consist of both a documentary and a genetic genealogy strand. The documentary strand in particular has been the major focus of the student work on these Projects, while the genetic genealogy strand is largely carried out by staff and is the area of interest in this article.
    [Show full text]
  • How Lucky Was the Genetic Investigation in the Golden State Killer Case?
    bioRxiv preprint doi: https://doi.org/10.1101/531384; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How lucky was the genetic investigation in the Golden State Killer case? Michael (Doc) Edge & Graham Coop Center for Population Biology, University of California, Davis Department of Evolution and Ecology, University of California, Davis [email protected] [email protected] January 28, 2019 Abstract Long-range forensic familial searching is a new method in forensic genetics. In long-range search, a sample of interest is genotyped at single-nucleotide polymorphism (SNP) markers, and the genotype is compared with a large database in order to find relatives. Here, we perform some simple calculations that explore the basic phenomena that govern long-range searching. Two opposing phenomena— one genealogical and one genetic—govern the success of the search in a database of a given size. As one considers more distant genealogical relationships, any target sample is likely to have more relatives—on average, one has more second cousins than first cousins, and so on. But more distant relatives are also harder to detect genetically. Starting with third cousins, there is an appreciable chance that a given genealogical relationship will not be detectable genetically. Given the balance of these genealogical and genetic phenomena and the size of databases currently queryable by law enforcement, it is likely that most people with substantial recent ancestry in the United States are accessible via long-range search.
    [Show full text]
  • DNA Phenotyping and Kinship Determination
    DNA Phenotyping and Kinship Determination Ellen McRae Greytak, PhD Director of Bioinformatics Parabon NanoLabs, Inc. ©©2 2015015 ParabonParabon NanoLabs,NanoLabs Inc.Inc All rightsrights reserved. reserved Forensic Applications of DNA Phenotyping Predict a person’s ancestry and/or appearance (“phenotype”) from his or her DNA Generate investigative leads when DNA doesn’t match a database (e.g., CODIS) Gain additional information (e.g., pigmentation, detailed ancestry) about unidentified remains Main value is in excluding non-matching individuals to help narrow a suspect list Without information on age, weight, lifestyle, etc., phenotyping currently is not targeted toward individual identification Snapshot Workflow Workflow of a Parabon® Snapshot™ Investigation Unidentified Remains DNA Evidence Is Collected and Sent to Crime Lab DNA Evidence DNA Crime Lab CCrime Lab Extracts DNA And Produces STR Profile Checked STR Profile (a.k.a. “DNA Fingerprint”) AAgainst DNA Database(s) Yes Match No Found? SnapshotS Composite Ordered Extracted DNA ™ D N A PH E N O T Y P I N G DNA Service Labs Unidentified DNA Is Genotype Data Is Genotyping Lab Produces SNP Sent To Service Lab Sent To Parabon Profile (a.k.a. “DNA Blueprint”) (DNA Extracted If Needed) 50pg – 2ng DNA Evidence — or — Extracted DNA NOTE: STR Profiles Do Not Contain Sufficient Genetic Information to Produce A SNP Genotype Parabon NanoLabs PParabonb AnalyzesAl PParabon Predicts Physical Traits Investigator Uses Genotype Data and Produces Snapshot Report
    [Show full text]
  • FORENSIC DNA PHENOTYPING and MASSIVE PARALLEL SEQUENCING by Krystal Breslin
    FORENSIC DNA PHENOTYPING AND MASSIVE PARALLEL SEQUENCING by Krystal Breslin A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Master of Science Department of Biological Sciences Indianapolis, Indiana December 2017 ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. Susan Walsh, Chair Department of Biology Dr. Kathleen Marrs Department of Biology Dr. Benjamin Perrin Department of Biology Approved by: Dr. Stephen Randall Head of the Graduate Program iii Dedicated to my husband and two sons. Thank you for always giving me the courage to follow my dreams, no matter where they take us. iv ACKNOWLEDGMENTS I would like to acknowledge and thank everyone who has helped me to become the person I am today. I would like to begin by thanking Dr. Susan Walsh, my PI and mentor. Your passion for science is contagious and has been instrumental in helping to inspire me to pursue my goals. Without your trust and guidance, I would not have been able to grow into the scientist I am today. You are a true role model and I am eternally grateful to have worked with you for the last three years. I cannot wait to see where the future takes you and your research. Secondly, I would like to thank Dr. Ben Perrin and Dr. Kathy Marrs for being a valuable part of my advisory committee. You are both very impressive scientists, and I truly value the input you have provided to my thesis. I would also like to acknowledge and thank each and every member of the Walsh laboratory: Charanya, Ryan, Noah, Morgan, Mirna, Bailey, Stephanie, Lydia, Emma, Clare, Sarah, Megan, Annie, Wesli, Kirsten, Katherine, and Gina.
    [Show full text]
  • 10 DNA Myths Busted, and Other Favorite Posts
    The Genetic Genealogist Blaine T. Bettinger, Ph.D. 1 10 DNA Testing Myths Busted, and Other Favorite Posts By Blaine T. Bettinger Blaine Bettinger is the author of The Genetic Genealogist. He has been using traditional genealogical research for almost 20 years and is interested in the intersection of genealogy and DNA Testing. In 2006 he received his Ph.D. in biochemistry with a concentration in genetics. He is currently a second-year law student. © 2007 Blaine T. Bettinger, Ph.D. Please feel free to post, email, or print this ebook for any non-commercial purpose. Not for resale. The Genetic Genealogist Blaine T. Bettinger, Ph.D. 2 10 DNA Testing Myths Busted (Originally posted October 25, 2007) 1. Genetic genealogy is only for hardcore genealogists. Wrong! If you’ve ever wondered about the origins of your DNA, or about your direct paternal or maternal ancestral line, then genetic genealogy might be an interesting way to learn more. Although DNA testing of a single line, such as through an mtDNA test, will only examine one ancestor out of 1024 potential ancestors at 10 generations ago, this is a 100% improvement over 0 ancestors out of 1024. If you add your father’s Y-DNA, this is a 200% improvement. Now add your mother’s mtDNA, and so on. However, please note the next myth: 2. I’m going to send in my DNA sample and get back my entire family tree. Sorry. DNA alone cannot tell a person who their great-grandmother was, or what Italian village their great-great grandfather came from.
    [Show full text]
  • Using X-DNA for Genealogy
    By Debbie Parker Wayne, cg, cgl dna basics Using X-DNA for genealogy This column is a series on using DNA for What can you DO with X-DNA? genealogical research. There are several types of DNA For most genealogical problems, X-DNA alone tests ofered for genealogical purposes. Researchers is not useful. It is used in correlation with must understand that only like tests can be compared: other DNA evidence to support a theory. For Y-DNA to Y-DNA, mitochondrial DNA (mtDNA) to example, atDNA might support a theory that mtDNA, autosomal DNA (atDNA) to atDNA, and two people are descended from a common X-DNA to X-DNA. To use DNA to solve a problem, ancestor, while X-DNA provides evidence for an understanding of DNA inheritance and the limits the ancestral line that common ancestor is part of the evidence is paramount. This article covers of. X-DNA focuses research on the most likely X-DNA and builds on the atDNA article in the last ancestral lines on which you may be related to a issue. Specialized X-DNA short tandem repeat (STR) person and excludes other lines as a possibility. tests are not covered in this article. Because of random recombination, the absence arlier articles have shown how to research of an X-DNA match does not prove you are not our patrilineal line using Y-DNA, which is related on a particular line, but the existence of passed only from a father to his sons; our an X-DNA match of signifcant size indicates you matrilineal line using mtDNA, which is are related on an ancestral line through which Epassed only from a mother to all of her children, X-DNA is inherited.
    [Show full text]