Coevolution and Cospeciation in a Bark-Beetle Fungal Symbiosis

Total Page:16

File Type:pdf, Size:1020Kb

Coevolution and Cospeciation in a Bark-Beetle Fungal Symbiosis University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 Coevolution and cospeciation in a bark-beetle fungal symbiosis Ryan Russell Bracewell Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bracewell, Ryan Russell, "Coevolution and cospeciation in a bark-beetle fungal symbiosis" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 10784. https://scholarworks.umt.edu/etd/10784 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COEVOLUTION AND COSPECIATION IN A BARK-BEETLE FUNGAL SYMBIOSIS By RYAN RUSSELL BRACEWELL B.S. Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 2002 M.S. Ecology, Utah State University, Logan, UT, 2009 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Forestry and Conservation Sciences The University of Montana Missoula, MT December 2015 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Dr. Diana Six, Chair Department of Ecosystem and Conservation Sciences Dr. Jeffrey Good Division of Biological Sciences Dr. John McCutcheon Division of Biological Sciences Dr. Michael Schwartz USDA Forest Service/College of Forestry and Conservation Dr. Ylva Lekberg MPG Ranch/College of Forestry and Conservation ProQuest Number: 10096854 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10096854 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Bracewell, Ryan, Ph.D., Fall 2015 Forestry and Conservation Science Coevolution and Cospeciation in a bark-beetle fungal symbiosis Chairperson: Diana L. Six Bark beetles in the genus Dendroctonus are some of the most important insects in forest ecosystems worldwide and are known to be involved in symbiotic relationships with fungi. However, we have a poor understanding of beetle-fungal coevolution and if the specificity we see in beetle-fungal relationships may translate to cospeciation over longer time frames. In this dissertation, I attempt to answer these questions by investigating the western pine beetle (Dendroctonus brevicomis)-fungal symbiosis, a beetle that consists of two putative cryptic species in the early stages of divergence on two susbspecies of ponderosa pine (Pinus ponderosa). In the first chapter, I describe research aimed at determining if the western pine beetle harbors the same species of mycangial fungi across its entire range. I found widespread fungal fidelity and that the beetle carries two species, Entomocorticium sp. B, and Ceratocystiopsis brevicomi. In the second chapter, I describe research aimed at determining if the western pine beetle is indeed in an obligate mutualism and is adapted to fungal isolates with a shared evolutionary history. I found that E. sp. B was crucial for the successful development of western pine beetles and found no significant difference in the effects of the natal (shared history) and non-natal (no shared history) isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non-natal fungus into their mycangium indicating adaption by the beetle to particular genotypes of symbiotic fungi. In the third chapter I describe research exploring if the beetle, its two fungal symbionts, and the host tree are genetically structured in a similar fashion indicative of shared evolutionary history and cospeciation. I sequenced the genomes of the beetle and two fungal symbionts and conducted population genetic and genomic analyses for the host tree, beetle, and for the two fungal symbionts. I found congruent patterns of population genetic structure and phylogenetic relationships between multiple species. Taken together, my dissertation research suggests that the western pine beetle is in a tightly linked and evolving obligate mutualism with fungi and that the entire tree-beetle-fungi system is diverging and cospeciating in concert. ii TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii ACKNOWLEDGEMENTS ............................................................................................... iv DISSERTATION OVERVIEW...........................................................................................1 CHAPTER 1: Broadscale specificity in a bark beetle-fungal symbiosis: A spatio-temporal analysis of the mycangial fungi of the western pine beetle ................................................4 Abstract ............................................................................................................................5 Introduction ......................................................................................................................6 Methods ............................................................................................................................9 Results ............................................................................................................................14 Discussion ......................................................................................................................17 References ......................................................................................................................22 Tables .............................................................................................................................31 Figures ............................................................................................................................33 CHAPTER 2: Experimental evidence of bark beetle adaptation to a fungal symbiont ....39 Abstract ..........................................................................................................................39 Introduction ....................................................................................................................40 Methods ..........................................................................................................................43 Results ............................................................................................................................48 Discussion ......................................................................................................................50 References ......................................................................................................................55 Tables .............................................................................................................................62 Figures ............................................................................................................................64 CHAPTER 3: Cascading speciation among mutualists and antagonists in a tree-beetle- fungal interaction ..............................................................................................................68 Abstract ..........................................................................................................................68 Introduction ....................................................................................................................69 Results ............................................................................................................................72 Discussion ......................................................................................................................79 Methods ..........................................................................................................................82 References ......................................................................................................................97 Tables ...........................................................................................................................106 Figures ..........................................................................................................................109 iii ACKNOWLEDGEMENTS The research described herein would have been impossible without the help of a large number of people. I would first and foremost like to thank my primary advisor, Diana Six, who broadened my horizons and got me excited about symbioses and fungi. Her enthusiasm for science is infectious and her attention to detail was always appreciated. I would also like to make a special mention of all of the support and mentorship that Jeff Good has provided throughout my dissertation. He has had a tremendous impact on the way I think about science and conduct research and I will forever be grateful. I would
Recommended publications
  • Geographic Cline Analysis As a Tool for Studying Genome-Wide Variation: a Case Study of Pollinator-Mediated Divergence in a Monkeyflower
    bioRxiv preprint doi: https://doi.org/10.1101/036954; this version posted January 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Geographic cline analysis as a tool for studying genome-wide variation: a case study of pollinator-mediated divergence in a monkeyflower Sean Stankowski1,2, James M. Sobel3 and Matthew A. Streisfeld1 1Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America 2Corresponding author E-mail: [email protected] 3Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America Keywords: ecotype formation, hybrid zone, Mimulus aurantiacus, pollinator isolation, reproductive isolation Running title: Genomics of pollinator-mediated divergence in a monkeyflower For consideration in the MEC special issue: The molecular basis of adaptation and ecological speciation - integrating genomic and molecular approaches; section: Ecological speciation genomics: advances and limitations 1 bioRxiv preprint doi: https://doi.org/10.1101/036954; this version posted January 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract A major goal of speciation research is to reveal the genomic signatures that accompany the speciation process. Genome scans are routinely used to explore genome-wide variation and identify highly differentiated loci that may contribute to ecological divergence, but they do not incorporate spatial, phenotypic, or environmental data that might enhance outlier detection.
    [Show full text]
  • Speciation in Heliconius Butterflies: Minimal Contact Followed 2 by Millions of Generations of Hybridisation 3 Simon H
    bioRxiv preprint doi: https://doi.org/10.1101/015800; this version posted March 2, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Speciation in Heliconius Butterflies: Minimal Contact Followed 2 by Millions of Generations of Hybridisation 3 Simon H. Martin*1, Anders Eriksson*1,2, Krzysztof M. Kozak1, Andrea Manica1 and 4 Chris D. Jiggins1 5 1 Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 6 3EJ, United Kingdom 7 2 Integrative Systems Biology Laboratory, King Abdullah University of Science 8 and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia 9 * These authors contributed equally 10 Corresponding Author: S.H. Martin, [email protected] 11 Running Head: Change in the rate of gene flow during butterfly speciation bioRxiv preprint doi: https://doi.org/10.1101/015800; this version posted March 2, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 2 12 Abstract 13 Documenting the full extent of gene flow during speciation poses a challenge, as 14 species ranges change over time and current rates of hybridisation might not reflect 15 historical trends. Theoretical work has emphasized the potential for speciation in the 16 face of ongoing hybridisation, and the genetic mechanisms that might facilitate this 17 process.
    [Show full text]
  • Biol B242 - Coevolution
    BIOL B242 - COEVOLUTION http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html BIOL B242 - COEVOLUTION So far ... In this course we have mainly discussed evolution within species, and evolution leading to speciation. Evolution by natural selection is caused by the interaction of populations/species with their environments. Today ... However, the environment of a species is always partly biotic. This brings up the possiblity that the "environment" itself may be evolving. Two or more species may in fact coevolve. And coevolution gives rise to some of the most interesting phenomena in nature. What is coevolution? At its most basic, coevolution is defined as evolution in two or more evolutionary entities brought about by reciprocal selective effects between the entities. The term was invented by Paul Ehrlich and Peter Raven in 1964 in a famous article: "Butterflies and plants: a study in coevolution", in which they showed how genera and families of butterflies depended for food on particular phylogenetic groupings of plants. We have already discussed some coevolutionary phenomena: For example, sex and recombination may have evolved because of a coevolutionary arms race between organisms and their parasites; the rate of evolution, and the likelihood of producing resistance to infection (in the hosts) and virulence (in the parasites) is enhanced by sex. We have also discussed sexual selection as a coevolutionary phenomenon between female choice and male secondary sexual traits. In this case, the coevolution is within a single species, but it is a kind of coevolution nonetheless. One of our problem sets involved frequency dependent selection between two types of players in an evolutionary "game".
    [Show full text]
  • Recent Hybrids Recapitulate Ancient Hybrid Outcomes
    Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 5-1-2020 Recent Hybrids Recapitulate Ancient Hybrid Outcomes Samridhi Chaturvedi Utah State University Lauren K. Lucas Utah State University C. Alex Buerkle University of Wyoming James A. Fordyce University of Tennessee, Knoxville Matthew L. Forister University of Nevada, Reno Chris C. Nice Texas State University See next page for additional authors Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Chaturvedi, S., Lucas, L.K., Buerkle, C.A. et al. Recent hybrids recapitulate ancient hybrid outcomes. Nat Commun 11, 2179 (2020). https://doi.org/10.1038/s41467-020-15641-x This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Authors Samridhi Chaturvedi, Lauren K. Lucas, C. Alex Buerkle, James A. Fordyce, Matthew L. Forister, Chris C. Nice, and Zachariah Gompert This article is available at DigitalCommons@USU: https://digitalcommons.usu.edu/eco_pubs/122 ARTICLE https://doi.org/10.1038/s41467-020-15641-x OPEN Recent hybrids recapitulate ancient hybrid outcomes Samridhi Chaturvedi1,2,3, Lauren K. Lucas1, C. Alex Buerkle 4, James A. Fordyce5, Matthew L. Forister6, ✉ Chris C. Nice7 & Zachariah Gompert1,2 Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in con- 1234567890():,; temporary hybrid zones versus ancient hybrid lineages is unknown.
    [Show full text]
  • Natural Selection Maintains a Singlelocus Leaf Shape Cline In
    Molecular Ecology (2013) 22, 552–564 doi: 10.1111/mec.12057 Natural selection maintains a single-locus leaf shape cline in Ivyleaf morning glory, Ipomoea hederacea BRANDON E. CAMPITELLI* and JOHN R. STINCHCOMBE*† *Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON Canada M5S 3B2, †Center for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada Abstract Clines in phenotypic traits with an underlying genetic basis potentially implicate natu- ral selection. However, neutral evolutionary processes such as random colonization, spatially restricted gene flow, and genetic drift could also result in similar spatial pat- terns, especially for single-locus traits because of their susceptibility to stochastic events. One way to distinguish between adaptive and neutral mechanisms is to com- pare the focal trait to neutral genetic loci to determine whether neutral loci demon- strate clinal variation (consistent with a neutral cline), or not. Ivyleaf morning glory, Ipomoea hederacea, exhibits a latitudinal cline for a Mendelian leaf shape polymor- phism in eastern North America, such that lobed genotypes dominate northern popula- tions and heart-shaped genotypes are restricted to southern populations. Here, we evaluate potential evolutionary mechanisms for this cline by first determining the allele frequencies at the leaf shape locus for 77 populations distributed throughout I. hederacea’s range and then comparing the geographical pattern at this locus to neu- tral amplified fragment length polymorphism (AFLP) loci. We detected both significant clinal variation and high genetic differentiation at the leaf shape locus across all popu- lations. In contrast, 99% of the putatively neutral loci do not display clinal variation, and I.
    [Show full text]
  • Genetic Exchange Across a Hybrid Zone Within the Iberian Endemic
    Molecular Ecology (2005) 14, 245–254 doi: 10.1111/j.1365-294X.2004.02390.x GeneticBlackwell Publishing, Ltd. exchange across a hybrid zone within the Iberian endemic golden-striped salamander, Chioglossa lusitanica F. SEQUEIRA,*† J. ALEXANDRINO,*§ S. ROCHA,* J. W. ARNTZEN*‡ and N. FERRAND*† *CIBIO/UP-Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485–661 Vairão, Portugal, †Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal, ‡National Museum of Natural History, PO Box 9517, 2300 RA Leiden, the Netherlands, §Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Science Building # 3160, Berkeley, CA 94720– 3160, USA Abstract The study of hybrid zones resulting from Pleistocene vicariance is central in examining the potential of genetically diverged evolutionary units either to introgress and merge or to proceed with further isolation. The hybrid zone between two mitochondrial lineages of Chioglossa lusitanica is located near the Mondego River in Central Portugal. We used mito- chondrial and nuclear diagnostic markers to conduct a formal statistical analysis of the Chioglossa hybrid zone in the context of tension zone theory. Key results are: (i) cline centres are not coincident for all markers, with average widths of ca. 2–15 km; (ii) heterozygote deficit was not observed across loci near the transect centre; (iii) associations of parental allele combinations (‘linkage disequilibrium’ R) were not detected either across loci or across the transect. These observations suggest that the Chioglossa hybrid zone is not a tension zone with strong selection against hybrids but instead one shaped mostly by neutral mixing.
    [Show full text]
  • Molecular Ecology of Petrels
    M o le c u la r e c o lo g y o f p e tr e ls (P te r o d r o m a sp p .) fr o m th e In d ia n O c e a n a n d N E A tla n tic , a n d im p lic a tio n s fo r th e ir c o n se r v a tio n m a n a g e m e n t. R u th M a rg a re t B ro w n A th e sis p re se n te d fo r th e d e g re e o f D o c to r o f P h ilo so p h y . S c h o o l o f B io lo g ic a l a n d C h e m ic a l S c ie n c e s, Q u e e n M a ry , U n iv e rsity o f L o n d o n . a n d In stitu te o f Z o o lo g y , Z o o lo g ic a l S o c ie ty o f L o n d o n . A u g u st 2 0 0 8 Statement of Originality I certify that this thesis, and the research to which it refers, are the product of my own work, and that any ideas or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referencing practices of the discipline.
    [Show full text]
  • The Origin of Specificity by Means of Natural Selection: Evolved and Nonhost Resistance in Host–Pathogen Interactions
    PERSPECTIVE doi:10.1111/j.1558-5646.2012.01793.x THE ORIGIN OF SPECIFICITY BY MEANS OF NATURAL SELECTION: EVOLVED AND NONHOST RESISTANCE IN HOST–PATHOGEN INTERACTIONS Janis Antonovics,1,2,3 Mike Boots,1,4 Dieter Ebert,1,5 Britt Koskella,1,4 Mary Poss,1,6 and Ben M. Sadd1,7 1Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany 2E-mail: [email protected] 3Current address: Department of Biology, University of Virginia, Charlottesville, Virginia 2290 4Current address: Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, United Kingdom 5Current address: University of Basel, Zoological Institute, Vesalgasse 1, CH-4051 Basel, Switzerland 6Current address: Department of Biology, Penn State University, University Park, Pennsylvania 16801 7Current address: Institute of Integrative Biology, ETH Zurich,¨ 8092 Zurich,¨ Switzerland Received March 7, 2012 Accepted August 9, 2012 Most species seem to be completely resistant to most pathogens and parasites. This resistance has been called “nonhost resistance” because it is exhibited by species that are considered not to be part of the normal host range of the pathogen. A conceptual model is presented suggesting that failure of infection on nonhosts may be an incidental by-product of pathogen evolution leading to specialization on their source hosts. This model is contrasted with resistance that results from hosts evolving to resist challenge by their pathogens, either as a result of coevolution with a persistent pathogen or as the result of one-sided evolution by the host against pathogens that are not self-sustaining on those hosts. Distinguishing evolved from nonevolved resistance leads to contrasting predictions regarding the relationship between resistance and genetic distance.
    [Show full text]
  • Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene flow?
    Can secondary contact following range expansion be distinguished from barriers to gene flow? Johanna Bertl1,2, Harald Ringbauer3,4 and Michael G.B. Blum5 1 Department of Molecular Medicine, Aarhus University, Aarhus, Denmark 2 Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria 3 Department of Human Genetics, University of Chicago, Chicago, IL, USA 4 Institute of Science and Technology Austria, Klosterneuburg, Austria 5 Laboratoire TIMC-IMAG, UMR 5525, Université Grenoble Alpes, CNRS, Grenoble, France ABSTRACT Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index c, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of fl Submitted 29 November 2016 individuals when investigating secondary contact in order to better re ect the Accepted 1 July 2018 complex spatio-temporal evolution of populations and species.
    [Show full text]
  • Microevolution: Species Concept Core Course: ZOOL3014 B.Sc. (Hons’): Vith Semester
    Microevolution: Species concept Core course: ZOOL3014 B.Sc. (Hons’): VIth Semester Prof. Pranveer Singh Clines A cline is a geographic gradient in the frequency of a gene, or in the average value of a character Clines can arise for different reasons: • Natural selection favors a slightly different form along the gradient • It can also arise if two forms are adapted to different environments separated in space and migration (gene flow) takes place between them Term coined by Julian Huxley in 1838 Geographic variation normally exists in the form of a continuous cline A sudden change in gene or character frequency is called a stepped cline An important type of stepped cline is a hybrid zone, an area of contact between two different forms of a species at which hybridization takes place Drivers and evolution of clines Two populations with individuals moving between the populations to demonstrate gene flow Development of clines 1. Primary differentiation / Primary contact / Primary intergradation Primary differentiation is demonstrated using the peppered moth as an example, with a change in an environmental variable such as sooty coverage of trees imposing a selective pressure on a previously uniformly coloured moth population This causes the frequency of melanic morphs to increase the more soot there is on vegetation 2. Secondary contact / Secondary intergradation / Secondary introgression Secondary contact between two previously isolated populations Two previously isolated populations establish contact and therefore gene flow, creating an
    [Show full text]
  • Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja
    Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja To cite this version: Roger Butlin, Carole Smadja. Coupling, Reinforcement, and Speciation. American Naturalist, Uni- versity of Chicago Press, 2018, 191 (2), pp.155-172. 10.1086/695136. hal-01945350 HAL Id: hal-01945350 https://hal.archives-ouvertes.fr/hal-01945350 Submitted on 5 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License vol. 191, no. 2 the american naturalist february 2018 Synthesis Coupling, Reinforcement, and Speciation Roger K. Butlin1,2,* and Carole M. Smadja1,3 1. Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa; 2. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom; and Department of Marine Sciences, University of Gothenburg, Tjärnö SE-45296 Strömstad, Sweden; 3. Institut des Sciences de l’Evolution, Unité Mixte de Recherche 5554 (Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement–École pratique des hautes études), Université de Montpellier, 34095 Montpellier, France Submitted March 15, 2017; Accepted August 28, 2017; Electronically published December 15, 2017 abstract: During the process of speciation, populations may di- Introduction verge for traits and at their underlying loci that contribute barriers Understanding how reproductive isolation evolves is key fl to gene ow.
    [Show full text]
  • Plant Speciation
    PLANT SPECIATION Niarsi Merry Hemelda, M.Si. MK Keanekaragaman Tumbuhan Departemen Biologi FMIPA -UI OUTLINE: Evolution Modes of plant speciation Features of plant evolution Speciation EVOLUTION SPECIES The cumulative The basic biological change in the heritable unit around which characteristics of a classifications are population over time. based. Speciation: an evolutionary process by which a new species comes into being. Evolution Microevolution Macroevolution • Microevolution is a change in generally refers to evolution gene frequency in a population in above the species level. short period of time. • Processes that can directly affect gene frequencies in a population: (mutation, migration, genetic drift, non random mating, natural selection) Patterns of evolution: A. Divergent Evolution: the two species gradually become increasingly different. B. Convergent Evolution: species of different ancestry begin to share analogous traits because of a shared environment or other selection pressure C. Parallel Evolution: two species evolve independently of each other, maintaining the same level of similarity. Parallel evolution usually occurs between unrelated species that do not occupy the same or similar niches in a given habitat. How a new species originate: • Species are created by a series of evolutionary processes. • Classically, speciation has been viewed as a three stage process: oIsolation of populations. oDivergence in traits of separated populations (e.g. mating system or habitat use). oReproductive isolation of populations that maintains
    [Show full text]