Induction Cooking Fact Sheet WCAG
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Generalized Approach to Planar Induction Heating Magnetics by Richard Yi Zhang B.E
A Generalized Approach to Planar Induction Heating Magnetics by Richard Yi Zhang B.E. (Hons), University of Canterbury, New Zealand (2009) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 c Massachusetts Institute of Technology 2012. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 18, 2012 Certified by. John G. Kassakian Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Leslie A. Kolodziejski Chair, Department Committee on Graduate Theses 2 A Generalized Approach to Planar Induction Heating Magnetics by Richard Yi Zhang Submitted to the Department of Electrical Engineering and Computer Science on May 18, 2012, in partial fulfillment of the requirements for the degree of Master of Science Abstract This thesis describes an efficient numerical simulation technique of magnetoquasistatic electromagnetic fields for planar induction heating applications. The technique is based on a volume-element discretization, integral formulation of Maxwell’s equa- tions, and uses the multilayer Green’s function to avoid volumetric meshing of the heated material. The technique demonstrates two orders of magnitude of computa- tional advantage compared to existing FEM techniques. Single-objective and multi- objective optimization of a domestic induction heating coil are performed using the new technique, using more advanced algorithms than those previously used due to the increase in speed. Both optimization algorithms produced novel, three-dimensional induction coil designs. Thesis Supervisor: John G. Kassakian Title: Professor of Electrical Engineering and Computer Science 3 4 Acknowledgments My work would not have been possible without the mentorship of my advisor, Prof. -
Tiled Stove Into a Work of Art
The Hidden Treasures of Sturehov Castle The Development of the Swedish Tiled Stove into a Work of Art By Susanne Hall [Master of Philosophy Faculty of Arts University of Glasgow] Christie’s Education London Master’s Programme October 2001 © Susanne Hall ProQuest Number: 13818850 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818850 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 I... 7 i8 S IT Y LiflaAftV* U5 Oit Abstract The tiled stove has served as a heating source for numerous generations of Swedes, and today their presence still remains a natural component in many interiors. These stoves are of a distinctive Swedish type that emerged in the m id-l8,h century. By examing the earlier history of the tiled stove, stylistic changes and technical development 1 will try to establish how this Swedish type developed. I will also focus on the role of the tiled stove as a determining factor in the Swedish interior. Comparisons with stoves from Germany will show how the foreign influences were adapted to better suit the Swedish taste. -
User Manual Heritage® Induction Cooktop HICT305BG, HICT365BG
User Manual Heritage® Induction Cooktop HICT305BG, HICT365BG Table of Contents Important Safety Instructions ............................................... 1 Consignes de sécurité importantes .........................4 Before Using the Cooktop ......................................................7 Using the Cooktop .................................................................10 Care and Cleaning .................................................................15 Troubleshooting ....................................................................16 Warranty ................................................................................. 17 Warranty Card ........................................................ Back Cover Part No. 113776 Rev. A To Our Valued Customer: Congratulations on your purchase of the very latest in Dacor® products! Our unique combination of features, style, and performance make us a great addition to your home. To familiarize yourself with the controls, functions, and full potential of your new Dacor induction cooktop, read this manual thoroughly, starting at the Important Safety Instructions section (Pg. 1). Dacor appliances are designed and manufactured with quality and pride, while working within the framework of our company values. Should you ever have an issue with your cooktop, first consult the Troubleshooting section (Pg. 14), which gives suggestions and remedies that may pre-empt a call for service. Valuable customer input helps us continually improve our products and services, so feel free to contact -
Modeling, Simulation and Verification of Contactless Power Transfer
Modeling, Simulation and Verification of Contactless Power Transfer Systems J. Serrano(1,*), M. Perez-Tarragona´ (1), C. Carretero(2), J. Acero(1). (1)Department of Electronic Engineering and Communications. Universidad de Zaragoza. Maria de Luna, 1. 50018 Zaragoza. Spain. (2)Department of Applied Physics. Universidad de Zaragoza. Pedro Cerbuna, 12. 50009 Zaragoza, Spain. (*)E-mail: [email protected] Abstract—This work presents the analysis of a wireless power transfer system consisting of two coupled coils and ferrite slabs acting as flux con- centrators. The study makes use of Finite Element Method (FEM) simulations to predict the key per- formance indicators of the system such as coupling, quality factor and winding resistance. The simula- tions results were compared against experimental measurements on a prototype showing consistence. Keywords—Wireless power transfer, Electro- magnetic modeling, FEM simulation, Inductive Charging. Fig. 1. Wireless power transfer system. I. INTRODUCTION Wireless power transfer (WPT) applications will be later compared against measurements on are taking major importance among market trends a prototype. thanks to their versatility and user convenience. This solution allows the producers to remove In order to address this problem, in Section the cables and connectors which are one of the II, key performance indicators will be defined. main causes of breakdown. As this technology In Section III, the electromagnetic model will be consolidates, WPT systems are becoming more presented. In Section IV, the simulation procedure common and available for a large number of with COMSOL will be detailed. In Section V, devices. The modeling of these systems is, the model will be experimentally validated by therefore, of great interest. -
FSM Induction Cooking Feature April 2014
FSM Magazine – April 2014 Feature: Induction Cooking Please attribute any quotes on this information to Ray Hall, Managing Director, RH Hall Ltd How do induction cookers work compared to conventional equipment? Induction works by the process of passing a high frequency alternating current through an electrically conducting object (usually metal) to create a magnetic field of energy. This energy then induces an electric current in the metal object it comes into contact with it – i.e. in the case of cooking – it creates a flowing current in a metal pan which then produces resistive heating, which heats the food. In an induction cooker, a ferromagnetic coil is placed underneath a ceramic hob that transfers heat directly to the metal pan on top. Whilst the current is large, it is produced by a low voltage. The induction process works by ‘direct’ heating of a metal cooking vessel, as opposed to using ‘heat transfer’ which you have when burning gas on a traditional cooking stove. For nearly all models of induction cooktop, the cooking vessel must be made of a ferromagnetic metal or placed on an interface disk which enables non-induction cookware to be used on induction cooking surfaces. How widespread is their use becoming? Induction cooking equipment may still be more expensive than traditional methods at the moment, but it is becoming cheaper and more cost effective, especially since the interest and acceptance of it is widening and with more ranges becoming available in the market – most manufacturers now offer some form of induction cooking equipment – from the entry level – like our Maestrowave Induction Hob which runs off a 13 amp plug, to full induction ranges, which are an alternative to a traditional gas 6 burner range for example. -
Design of a Battery-Powered Induction Stove by Daniel J Weber S.B., Massachusetts Institute of Technology, 2014
Design of a Battery-Powered Induction Stove by Daniel J Weber S.B., Massachusetts Institute of Technology, 2014 Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology June 2015 Copyright 2015 Massachusetts Institute of Technology. All rights reserved. Author: Department of Electrical Engineering and Computer Science May 22, 2015 Certified By: Rich Fletcher, Thesis Supervisor May 22, 2015 Accepted By: Prof. Albert R. Meyer, Chairman, Masters of Engineering Thesis Committee 1 2 Design of a Battery-Powered Induction Stove by Daniel J Weber Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Many people in the developing areas of the world struggle to cook with stoves that emit hazardous fumes and contribute to green house gas emissions. Electric stoves would alleviate many of these issues, but significant barriers to adoption, most notably lack of reliable electric power, make current commercial options infeasible. However, a stove with an input power of 24V DC elegantly solves the issue of intermittent power by allowing car batteries to be used instead of a grid connection, while also allowing seamless integration with small scale solar installations and solar-based micro-grids. However, no existing commercial stoves nor academic research have attempted to create an induction stove powered from a low voltage DC source. This paper presents the design of a low voltage current-fed, full-bridge parallel resonant converter stove. -
ABC Concept 2 Hydro Wood Fired Oven with Boiler Owner's Manual
TECHNICAL INSTRUCTIONS FOR CONCEPT 2 AND CONCEPT 2 MINI CENTRAL HEATING COOKERS Dear Customers, We would like to thank you for your trust and to congratulate you since by this purchase you have become a member of voluminous family of satisfied buyers of company ABC PROIZVOD. We anticipate that soon you will be sure that you selected a quality and economic product, being a result of longstanding tradition of our company in the manufacture of central heating boilers and cookers. If you have any doubts, concerns or inquiries, please do not hesitate to contact us, no matter where and from whom you purchased our product, we will provide you with our assistance bymeans of expert advice and technical support. Yours Faithfully Founded in 1990. Prior to use of these central heating cookers, please read this manual carefully, since it provides you with information regarding safe installation, operation and maintenance of these devices. 1.Cooker intended use and specific features.........................................................2 2. Safety......................................................................................................................2 3. Description and technical characteristics.......................................................... 3 4. Transportation and storage..................................................................................5 5. lnstallation............................................................................................................. 6 6. Operation-fuel feeding..........................................................................................9 -
Discover a World of Culinary Creativity. DÉCOUVREZ UN MONDE DE CRÉATIVITÉ CULINAIRE
Lacanche 2019 COLLECTION Discover a world of culinary creativity. DÉCOUVREZ UN MONDE DE CRÉATIVITÉ CULINAIRE Photo credit: Blair Harris Interior Design, NYC Burgundy, France, home of the Lacanche. Handcrafted in the heart of Burgundy, Lacanche French Ranges offer the highest expression of culinary art to both cooking enthusiast and professional chef alike. Blending exquisite French artistry with a long tradition of craftsmanship in metal, "Les Pianos Gastronomes" have fulfilled an unwavering caliber of culinary excellence for over 250 years. Unparalleled in its commitment to the spirit of French culture, Lacanche brings long-standing heritage to the home, and family back to the table. Make a bold statement. As a beloved focal point of your kitchen, a Lacanche exempli- fies artistry, heritage and performance. While its aesthetics draw universal acclaim, the real reward lies in discover- ing its exceptional features. Durable porcelain enamel allows your “star of the kitchen” to shine, while a seamless, stainless steel cooktop provides easy cleaning. With 28 premium colors, five trim finishes (brass, chrome, nickel, brushed stainless and copper) and multiple rangetop configurations to choose from, you will to be able to design the range of your dreams! How to Custom Design Your Lacanche 1. Choose a model & trim style: Classique or Moderne. 2. Choose a rangetop configuration: Classique, Classique 4-Feux, Classique 6-Feux or Traditional Classique 4-Feux is available on the Cormatin, Rully, Chassagne, Chambertin, Saulieu, Savigny, Sully, Fontenay and Citeaux models. Classique 6-Feux is available on the Beaune and Bussy models. 3. Choose additional burners - if space allows on your cooktop (see page 14 for options.) 4. -
Induction Cooking Heater and Method for the Control Thereof
(19) & (11) EP 2 209 352 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 21.07.2010 Bulletin 2010/29 H05B 6/06 (2006.01) (21) Application number: 09150707.9 (22) Date of filing: 16.01.2009 (84) Designated Contracting States: (72) Inventor: Gutierrez, Diego Neftali, AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Patent dept. Whirlpool Europe s.r.l. HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL 21025, Comerio (IT) PT RO SE SI SK TR Designated Extension States: (74) Representative: Guerci, Alessandro AL BA RS Whirlpool Europe S.r.l. Patent Department (71) Applicants: Viale G. Borghi 27 • Whirlpool Corporation 21025 Comerio (VA) (IT) Benton Harbor, MI 49022 (US) • TEKA Industrial S.A. 39011 Santander (ES) (54) Induction cooking heater and method for the control thereof (57) An induction cooking heater having at least one associated to the ferrite bars and adapted to monitor at inductor and ferrite bars as magnetic field concentrators least one electric parameter of said sensing circuit in or- located beneath the inductor comprises a sensing circuit der to prevent the ferrite bars from reaching the Curie point temperature. EP 2 209 352 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 209 352 A1 Description [0001] The present invention relates to an induction cooking heater of the type comprising at least one inductor and magnetic field concentration means located beneath the inductor. 5 [0002] These known induction cooking heaters use half-bridge converters for supplying the load composed of the system induction coil + cooking vessel in series with two parallel resonant capacitors. -
Induction Cooking – Igbts in Resonant Converters
AN4713 Application note Induction cooking: IGBTs in resonant converters Luigi Abbatelli, Giuseppe Catalisano, Rosario Gulino, Maurizio Melito Introduction In this paper, we specifically examine the role of STMicroelectronics IGBTs in resonant converters for induction cooking applications. We aim to help designers select the appropriate IGBTs for their circuits by explaining the dependence of IGBT power loss on key parameters, circuit topology and application requirements. Resonant and quasi-resonant switching techniques have been widely used in high-frequency power conversion systems in order to reduce overall size, weight and power loss [1]. To minimize switching losses, resonant and quasi-resonant converters force switching transitions to occur when there is either zero current through or zero voltage across the power switch. However, the necessary current or voltage rating of the IGBT is much higher than that required for conventional hard-switching systems, so the devices are more expensive. For medium and high power systems, IGBTs with higher current density and low saturation voltages must be selected to minimize the conduction loss. An induction cooking application is included to evaluate STMicroelectronics IGBT components or to get started quickly with your own induction cooking development project. Induction cooking is not a new invention, it is used all around the world with first patents dating to the early 1900s[2]. With recent improvements in technology and the consequent reduction of component costs, induction cooking equipment is becoming increasingly more affordable. June 2015 DocID027936 Rev 1 1/20 www.st.com Contents AN4713 Contents 1 Induction cooking basics................................................................ 4 2 Converter topology and power switch requirements .................. -
High Frequency Inverter Power Stage Design Considerations for Non-Magnetic Materials Induction Cooking
High Frequency Inverter Power Stage Design Considerations for Non-Magnetic Materials Induction Cooking Zidong Liu Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Jason Lai, Chairman Kathleen Meehan Wensong Yu January 14, 2011 Blacksburg, Virginia Key words: Electromagnetic, Induction Cooking, Series-Resonant, Soft Switching Copyright 2010, Zidong Liu High Frequency Inverter Power Stage Design Considerations for Non-Magnetic Materials Induction Cooking Zidong Liu ABSTRACT Recently induction cookers, which are based on induction heating principle, have become quite popular due to their advantages such as high energy efficiency, safety, cleanliness, and compact size. However, it is widely known that with current technology, induction cookers require the cookware to be made of magnetic materials such as iron and stainless steel. This is why a lot of cookware is labeled ―Induction Ready‖ on the bottom. The limited choice of ―Induction Ready‖ cookware causes inconvenience to customers and limits the growing popularity of the induction cooker. Therefore, a novel induction cooker, which can work for non-magnetic material cookware such as aluminum and copper, can be very competitive in the market. This thesis studies the induction cooking application; briefly introduces its fundamental principle, research background and the motivation of the development of a non-magnetic material induction cooker. Followed by the research motivation, three commonly used inverter topologies, series resonant inverter, parallel resonant inverter, and single-ended resonant inverter, are introduced. A comparative study is made among these three topologies, and the comparative study leads to a conclusion that the series resonant inverter is more suitable for non-magnetic material induction cooking application. -
Sopka Magnum Manual
Owners Manual for Magnum Revised: November 2011 Manufactured by: Imported by: Milan Blagojevic AD Sopka Inc Djure Strugara 20 4181 Plymouth Road 11300 Smederevo Cleveland, OH 44109 Serbia USA www.mbs.rs www.sopkainc.com Listed: UL 1482, ULC-S627 Solid Fuel Type Room Heaters PLEASE READ ALL INSTRUCTIONS BEFORE YOU INSTALL YOUR NEW STOVE. FAILURE TO FOLLOW INSTRUCTIONS MAY RESULT IN PROPERTY DAMAGE, BODILY INJURY, OR EVEN DEATH. SAFETY NOTICE: FOR YOUR SAFETY, CONTACT LOCAL BUILDING OR FIRE OFFICIAL ABOUT PERMITS, RESTRICTIONS, AND INSTALLATION REQUIRE- MENTS FOR YOUR AREA. PLEASE CHECK WITH YOUR INSURANCE BEFORE USING IN YOUR HOME. USE PROFESSIONAL INSTALLER. C A U T I O N Hot while in operation– do not touch Contact may cause skin burns Keep children and clothing away Keep furnishing and other combustible materials a considerable distance away from stove. Do not overfire. If stove or chimney connector glows, you are overfiring DO NOT INSTALL IN MOBILE HOME OR TRAILER 1 SAFETY INSTRUCTIONS Read all instructions carefully. 1. The installation of this stove must comply with your local building codes. Please observe the clearance to combustible. Stove must be 18”(46 cm) from any combustible material, wall, wood, furniture, paper, etc. Note: Drywall faced with bricks or stone should be con- sider a combustible surface. 2. Always connect this stove to a chimney and vent outside. This stove requires approved ma- sonry or factory build 6” diameter UL 103 Type HT chimney, that is high enough to give good draft. 3. Do NOT connect this stove to a chimney flue serving another appliance.