Full Page Fax Print

Total Page:16

File Type:pdf, Size:1020Kb

Full Page Fax Print :110LECliLAR PHYLOGENETICS AND EVOLUTION Vol. 9, ~o. 1, February, pp. 55--63, 1998 ART! CL E NO FY970439 Details of Gastropod Phylogeny lnferred from 18S rRNA Sequences Birgitta Winnepenninckx, *· 1 Gerhard Steiner, t Thierry Backeljau,+ and Rupert De Wachter* *Departement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium; tlnstitute of Zoology, University of Vienna, Althanstrasse 14, A-1 090 Vienna, Austria; and :f:Royal Belgian lnstitute of Natura! Sciences, Vautierstraat 29, B-1 000 Brussel, Belgium Received February 4, 1997; revised June 6, 1997 molecular data (e.g., Tillier et al., 1992, 1994, 1996; Some generally accepted viewpoints on the phyloge­ Rosenberg et al., 1994; Winnepenninckx et al., 1996). A netic relationships within the molluscan class Gas­ recent 188 rRNA analysis of molluseau relationships tropoda are reassessed by comparing complete 18S suggested that this molecule might be suitable to rRNA sequences. Phylogenetic analyses were per­ resolve phylogenetic problems at infraclass levels (Win­ formed using the neighbor-joining and maximum par­ nepenninckx et al., 1996). In the present paper we simony methods. The previously suggested basal posi­ further explore this issue by analyzing a number of tion of Archaeogastropoda, including Neritimorpha generally accepted ideas on the infraclass phylogeny of and Vetigastropoda, in the gastropod clade is con­ Gastropoda using 11 new and 7 publisbed (Winnepen­ firmed. The present study also provides new molecular ninckx et al., 1992, 1994, 1996) complete gastropod 188 evidence for the monophyly of both Caenogastropoda rRNA sequences. The points dealtwithare the position and Euthyneura (Pulmonata and Opisthobranchia), and suggested paraphyly ofProsobranchia and Archaeo­ making Prosobranchia paraphyletic. The relation­ ships within Caenogastropoda and Euthyneura data gastropoda, as well as the monophyly of taxa such as turn out to he very unstable on the basis of the present Caenogastropoda, Neotaenioglossa, Muricacea, Euthy­ 18S rRNA sequences. The present 18S rRNA data ques­ neura, Pulmonata, and Stylommatophora. In this con­ tion, but are insufficient to decide on, muricacean text, particular attention willbe paid to the monophyly (Neogastropoda), neotaenioglossan, pulmonate, or sty­ and position ofthe Systellommatophora, a group which lommatophoran monophyly. The analyses also focus includes the families Veronicellidae, Onchidiidae, and on two systellommatophoran families, namely, Veroni­ Rathousiidae, and adcording to some authors also the cellidae and Onchidiidae. It is suggested that Systellom­ Rhodopidae (von Salvini-Plawen, 1970) and the matophora are not a monophyletic unit but, due to the Smeagolidae (Climo, 1980; Tillier and Ponder, 1992). lack of stability in the euthyneuran clade, their affinity Systellommatophora are considered to be either pulmo­ to either Opisthobranchia or Pulmonata could not he nates (e.g., Van Mol, 1974; Solem, 1979; Tillier, 1984; determined. r 1998 Academie Pre ss Haszprunar, 1988b; Haszprunar and Huber, 1990; Tillier and Ponder, 1992) or opisthobranchs (e.g., Boett­ ger, 1955), although von Salvini-Plawen (1970) consid­ INTRODUCTION ered them as a proper subclass, the Gymnomorpha, related to the opisthobranchs. Their status as a sepa­ Gastropoda is the largest molluseau class and in­ rate group was confirmed by von Salvini-Plawen and cludes the common terrestrial, freshwater, and marine Steiner (1996), who related them to the pulmonates. snails and slugs. It has an excellent fossil record going However, systellommatophoran monophyly (e.g., von back to 550 MYA (Runnegar and Pojeta, 1985). The Salvini-Plawen, 1970) is still debated (e.g., Climo, das~ is traditionally divided into three subclasses: 1980; Tillier, 1984; Haszprunar and_Huber,,,. 1990). Prosobranchia (Streptoneura), Opisthobranchia, and Pulmonata (together the latter constitute the Euthy­ MATERIALS AND METHODS neura). The phylogenetic relationships between and within these subclasses are longstanding problems Amplification and Sequencing ofthe 188 rRNA Genes (e.g., Ponder and Lindberg, 1996, 1997; von Salvini­ The taxonomy of the gastropod species used in this Plawen and Steiner, 1996; fora review of earlier work study is given in Table 1. Sampling locations are listed see Bieler, 1992), which are increasingly stuclied with in Table 2. The species were frozen alive. After dissec­ tion, DNA was extracted (Winnepenninckx et al., 1993) ' Present address: Royal Belgian Institute for Natura! Sciences, from the tissues indicated in Table 2. The 188 rRNA Vautierstraat 29, B-1000 Brussel, Belgium. genes were PCR-amplified, cloned, and sequenced as 55 1055-7903/98 $25.00 Copyright © 1998 by Academie Press All rights of reproduetion in any form reserved. 56 WINNEPENNINCKX ET AL. TABLE 1 Taxonomy of the Gastropod Species Used in This Study -------- Subclass Superorder Order Suborder Family Genus ----------- Prosobranchia" Archaeogastropoda a Vetigastropoda Trochidae Monodontab Neritimorpha Neritidae Nerita Caenogastropoda N eogastropoda Buccinidae Pisaniab N assariidae Nassariusb Fasciolariidae Fasciolaria6 Muricidae Thais Neotaenioglossa Discopoda Littorinidae Littorinab Bursidae Bursab Calyptraeidae Crepidula6 Pulmonaü, Stylommatophora :VIes urethra Cl a usiliidae Baleab Sigmurethra Holapodopes Achatinidae Limicolaria Aulocopoda Succineidae Oxylomab Holopoda Helicidae Helix Basommatophora Siphonariidae Sipkonaria Systellommatorphora Onchidiacea Onchidiidae Onchidella Soleolifera Veronicellidae Laevicaulisb Opisthobranchia Anaspidea Aplysidae Aplysiab Note. The taxonomy of the Archaeogastropoda is based on Haszprunar ( 1988b, Table 5, p. 428), except for its ranking as superorder; the Caenogastropoda are classified according to Ponder and Warén (1988). The classification of the Neogastropoda is based on Ponder (1973); Pulmorrata are classified according to Solem I 1979), except for the placement of Siphonaria, which follows von Salvini-Plawen (1970). a Currently considered nonmonophyletic. 6 Sequence determined in this study. described by Winnepenninckx et al. (1995), using the structure similarity. If necessary, manual adjustments primers published in Winnepenninckx et al. (1994) and were made with the same program. The secondary two M13 universa! primers. structure model of Van de Peer et al. (1996a) was used. Data Analysis Sequence regions corresponding to the amplification primer at the 5' end ofthe gene were removed prior to The new gastropod 188 rRNA sequences were added reconstruction of phylogenetic trees. The 188 rRNA to the alignment of Van de Peer et al. (1996a) using the sequences were analyzed using neighbor-joining (NJ) computer program DC8E (De Rijk and De Wachter, and maximum parsimony (MP) methods. The program 1993). which considers primary as well as secondary TREECON (Van de Peer and De Wachter, 1993) was used to construct NJ trees based on the formulas of TABLE 2 Jukes and Cantor (1969), Kimura (1980), or Van de Peer et al. (1996b). Gaps were nottaken into account. Sourees and Tissue Type of Gastropod Species Used Tree stability was assessed via bootstrapping over 1000 for This Study replicates. MP trees were constructed on the phyloge­ ----- - ----·----------=-----~~---~--~ netically informative sites using either the heuristic or Species Sampling location the exhaustive search option ofPAUP (8wofford, 1993). A.plysia ,;p. HongKong Oigestive gland Stability of MP trees was assessed via bootstrapping Balea bipli,·atu :Vlortsell Belgium 1 Complete organism over 1000 replicates and the calculation of decay indi­ Bursa ronu HongKong Bucal mass + foot ces (Bremer, 1988; Donoghue et al., 1992). As until now muscle there is no consensus about the minimal bootstrap Crepidula adunca Vaneauver <Canada 1 Albumen gland Fasciolaria !i[;naria Bahar Ic-Cagnay Albumen gland value necessary toregard a cluster as firmly supported, (Malta) bootstrap values were arbitrarily considered to reflect Labaratory bred DigestJve gland strong support if they exceeded 70% (Hillis and Bull, ( Görlitz, Germany 1 1993). Littorzna ohtusata Oostersehelde iN ether­ Albumen gland ~ lands) muscle tissue lv!onodonta labio HongKong Digestive -~ reproduc­ tive gland RESULTS Nassarius srnguin­ HongKong Penis + foot musdes jorensis New gastropod 188 rRNA sequences were submitted Oxyloma sp. Görlitz (Germany) Digestive gland to the EMBL sequence data library and have the Pisania stnata Bahar Ic-Cagnaq Digestive +- reproduc­ following accession nos.: Aplysia sp., X94268; Balea (Malta) tive gland biplicata, X94278; Bursa rana, X94269; Crepidula GASTROPOD PHYLOGENY 57 adunca, X94277; Faseiataria lignaria, X94275; Laevi­ Discopoda) nor Muricacea (represented by Buccinidae, cauli:; alte, X94273; Littorina obtusata, X94274; Mo­ Fasciolariidae, Muricidae, and Nassariidae) form mono­ nodonta labio, X94271; Nassarius singuinjorensis, phyletic groups. There is 100% bootstrap support for X94273; Oxyloma sp., X94276; Pisania striata, X94272. the monophyly of Euthyneura, which form two unsup­ Figure lA shows the NJ tree obtained on the basis of ported ciades consisting of(l) the three stylommatopho­ the Jukes and Cantor (1969) distauces of an alignment rans, Helix aspersa, Ba. biplicata, and Oxyloma sp., of complete 188 rRNA sequences of 18 gastropods. The and (2) the five remaining euthyneurans. Surprisingly, bivalve Galeomma takii was arbitrarily chosen as the achatinid Limicolaria kambeul belongs to this outgroup. The same topology was obtained with Kimura latter clade
Recommended publications
  • Nutritive Potentials and Utilization of Garden Snail (Limicolaria Aurora) Meat Meal in the Diet of Clarias Gariepinus Fingerlings
    African Journal of Biotechnology Vol. 5 (20), pp. 1999-2003, 16 October 2006 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2006 Academic Journals Full Length Research Paper Nutritive potentials and utilization of garden snail (Limicolaria aurora) meat meal in the diet of Clarias gariepinus fingerlings Sogbesan, O. A.1, Ugwumba A. A. A.2* and Madu C. T.1 1National Institute for Freshwater Fisheries Research, New-Bussa, Nigeria. 2Department of Zoology, University of Ibadan, Ibadan, Nigeria. Accepted 31 August, 2006 The possibility of using garden snail (Limicolaria aurora) meat meal as a protein source in fish feeds was tested in Clarias gariepinus fingerlings. Five isonitrogenous (43% crude protein) diets in which garden snail meat meal was used to replace fish meal at 0%, (control diet), 25, 50, 75 and 100% inclusion levels were used for the study. The fish were fed ad-libitum for 8 weeks. Garden snail meat meal used had a crude protein content of 66.76% and ash content of 4.10%, while crude protein and ash content of fishmeal used were 72.46% and 18.22% dry weight, respectively. The lipid content of garden snail meat meal and fishmeal; 7.85% and 7.97%, respectively, was not significantly different (p≤0.05). The mean weight gain, relative growth and specific growth rates were highest in fish fed 25% garden snail meat meal diet. The best food conversion ratio (1.21) and protein efficiency ratio (3.69) were also recorded in fish fed 25% garden snail meat meal diet. Visceral somatic indices (2.71-17.24%) increased significantly (p≤0.05) with increase in the garden snail meat meal inclusion in the diets.
    [Show full text]
  • Effects of Dietary Calcium on Growth and Oviposition of the African Land Snail Limicolaria Flammea (Pulmonata: Achatinidae)
    Effects of dietary calcium on growth and oviposition of the African land snail Limicolaria flammea (Pulmonata: Achatinidae) Rosemary I. Egonmwan Department of Zoology, University of Lagos, Akoka, Lagos, Nigeria. Tel: 234 1 5454891; Fax: 234 1 4932669; [email protected] Received 01-III-2006. Corrected 29-VIII-2006. Accepted 14-V-2007. Abstract: In an attempt to elucidate the role of calcium in the life of the edible Achatinid snail, Limicolaria flam- mea (Müller) I investigated short and long term effects of calcium added to the food. The short term experiments lasted for 18, 30 and 32 weeks respectively, while the long term experiment to determine life time utilization of calcium carbonate lasted for 15 months. In the short term experiments, hatchlings were divided into densities of one, ten and 50 snails. In the 10 snail group, there was a positive correlation between calcium provision, body weight (t test, p < 0.01; r = 0.96, p < 0.0001) and shell length (t test, p < 0.01; r = 0.96, p < 0.00001). There was also a positive correlation between increase in shell length and availability of calcium in the 1 snail group (t test, p< 0.01; r = 0.99, p < 0.00001). In the 50-snail group, the correlation was positive for shell length of the snails (t test, p < 0.05; r = 0.99, p < 0.0001) and body weight (t-test, p < 0.05; r = 99, p < 0.00001). Mortality was very high in the snails deprived of calcium and they did not produce eggs. In the long term experiment, there were three feeding peaks in L.
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Proceedings of the 76Th National Conference of the Unione Zoologica Italiana
    Quaderni del Centro Studi Alpino – IV th Proceedings of the 76 National Conference of the Unione Zoologica Italiana A cura di Marzio Zapparoli, Maria Cristina Belardinelli Università degli Studi della Tuscia 2015 Quaderni del Centro Studi Alpino – IV Unione Zoologica Italiana 76th National Conference Proceedings Viterbo, 15-18 September 2015 a cura di Marzio Zapparoli, Maria Cristina Belardinelli Università degli Studi della Tuscia 2015 1 Università degli Studi della Tuscia Centro Studi Alpino Via Rovigo 7, 38050 Pieve Tesino (TN) Sede Amministrativa c/o Dipartimento per l’Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia Via San Camillo de Lellis, s.n.c. 01100 Viterbo (VT) Consiglio del Centro Luigi Portoghesi (Presidente) Gian Maria Di Nocera Maria Gabriella Dionisi Giovanni Fiorentino Anna Scoppola Laura Selbmann Alessandro Sorrentino ISBN: 978 - 88 - 903595 - 4 - 5 Viterbo 2015 2 76th National Conference of the Unione Zoologica Italiana Università degli Studi della Tuscia Viterbo, 15-18 September 2015 Organizing Committee Anna Maria Fausto (President), Carlo Belfiore, Francesco Buonocore, Romolo Fochetti, Massimo Mazzini, Simona Picchietti, Nicla Romano, Giuseppe Scapigliati, Marzio Zapparoli Scientific Committee Elvira De Matthaeis (UZI President), Sapienza, Università di Roma Roberto Bertolani (UZI Secretary-Treasurer), Università di Modena e Reggio Emilia Carlo Belfiore, Università della Tuscia, Viterbo Giovanni Bernardini, Università dell’Insubria, Varese Ferdinando Boero, Università del Salento,
    [Show full text]
  • Species Fact Sheet with Juga Hemphilli Hemphilli
    SPECIES FACT SHEET Scientific Name: Juga hemphilli hemphilli (Henderson 1935) Common Name: barren juga Phylum: Mollusca Class: Gastropoda Order: Neotaenioglossa Family: Semisulcospiridae Taxonomic Note: Past genetic analysis by Lee et al. (2006) based on incorrectly identified museum voucher specimens suggested reassignment of the related subspecies Juga hemphilli dallesensis (and therefore the Juga hemphilli conspecifics, including Juga hemphilli hemphilli) to the genus Elimia. However, Foighil et al. (2009) conducted an additional analysis and determined that Juga hemphilli is indeed most closely related to other western Juga and should not be reassigned to the genus Elimia. Turgeon et al. (1998) do not recognize any subspecies of Juga hemphilli. Conservation Status: Global Status: G2T1 (May 2009) National Status: United States (N1) (June 2000) State Statuses: Oregon (S1), Wahington (S1) (NatureServe 2015) IUCN Red List: NE – Not evaluated Technical Description: This subspecies was originally described as Goniobasis hemphilli hemphilli (Henderson 1935). Burch (1982; 1989) revised this subspecies to the genus Juga to reflect the distribution of taxa west of the Continental Divide. Adult: Juga is a genus of medium-sized, aquatic, gilled snails traditionally treated as part of the subfamily Semisulcospirinae within the Pleuroceridae family, although the Semisulcospirinae subfamily was recently elevated to family level based on morphological and molecular evidence (Strong and Köhler 2009). The Pleuroceridae and Semisulcospiridae families both differ from the Hydrobiidae family in that the males lack a verge (male copulatory organ). The genus Juga is distinct from related pleurocerid snails based on reproductive anatomy and egg mass characters (Taylor 1966), as well as features of the ovipositor pore, radula, midgut, kidney, and pallial gonoduct (Strong and Frest 2007).
    [Show full text]
  • Short Communication Limicolaria Flammea
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.4 (1):97-102, 2011 Short communication Limicolaria flammea (Müller, 1774), another potentially invasive African land snail in tropical Asia Siong Kiat Tan1* and Gopalasamy Reuben Clements2,3 1Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Block S6, Science Drive 2, #03-01, Singapore 117546, Republic of Singapore 2 School of Marine and Tropical Biology, James Cook University, Cairns, Queensland, Australia 3 Center for Malaysian Indigenous Studies, Universiti Malaya, Malaysia. * Corresponding author, E-mail: [email protected] Abstract The pulmonate land snail, Limicolaria flammea (Müller, 1774), is native to West Africa and its invasive potential is hitherto unknown. We report this species in Asia, specifically on the tropical island of Singapore. The presence of this alien species is of grave concern because its congener (L. aurora ) has invaded the French West Indies and the confamilial giant African land snail (Achatina fulica) has colonized the globe to an extent where it is regarded as one of the world’s worst 100 invasive alien species. In order to curb the spread of L. flammea into the native forests in Singapore, local authorities should start employing mechanical eradication methods (e.g., handpicking). We hypothesize that L. flammea arrived together with an exotic plant species, whose identity and import origin must be determined urgently to prevent the spread of this species into the rest of tropical Asia. Keywords: Achatinid, Africa, mollusc, Singapore, Southeast Asia, terrestrial Received: 24 February 2010; Accepted: 28 February 2011; Published: 28 March 2011. Copyright: © Siong Kiat Tan and Gopalasamy Reuben Clements.
    [Show full text]
  • Effects of Dietary Calcium on Growth and Oviposition of the African Land Snail Limicolaria Flammea (Pulmonata: Achatinidae)
    Effects of dietary calcium on growth and oviposition of the African land snail Limicolaria flammea (Pulmonata: Achatinidae) Rosemary I. Egonmwan Department of Zoology, University of Lagos, Akoka, Lagos, Nigeria. Tel: 234 1 5454891; Fax: 234 1 4932669; [email protected] Received 01-III-2006. Corrected 29-VIII-2006. Accepted 14-V-2007. Abstract: In an attempt to elucidate the role of calcium in the life of the edible Achatinid snail, Limicolaria flam- mea (Müller) I investigated short and long term effects of calcium added to the food. The short term experiments lasted for 18, 30 and 32 weeks respectively, while the long term experiment to determine life time utilization of calcium carbonate lasted for 15 months. In the short term experiments, hatchlings were divided into densities of one, ten and 50 snails. In the 10 snail group, there was a positive correlation between calcium provision, body weight (t test, p < 0.01; r = 0.96, p < 0.0001) and shell length (t test, p < 0.01; r = 0.96, p < 0.00001). There was also a positive correlation between increase in shell length and availability of calcium in the 1 snail group (t test, p< 0.01; r = 0.99, p < 0.00001). In the 50-snail group, the correlation was positive for shell length of the snails (t test, p < 0.05; r = 0.99, p < 0.0001) and body weight (t-test, p < 0.05; r = 99, p < 0.00001). Mortality was very high in the snails deprived of calcium and they did not produce eggs. In the long term experiment, there were three feeding peaks in L.
    [Show full text]
  • Redalyc.Lista Sistemática De Los Moluscos Marinos Y Estuarinos Del
    Comunicaciones de la Sociedad Malacológica del Uruguay ISSN: 0037-8607 [email protected] Sociedad Malacológica del Uruguay Uruguay Clavijo, Cristhian; Scarabino, Fabrizio; Rojas, Alejandra; Martínez, Sergio Lista sistemática de los moluscos marinos y estuarinos del cuaternario de Uruguay Comunicaciones de la Sociedad Malacológica del Uruguay, vol. 9, núm. 88, 2005, pp. 381-411 Sociedad Malacológica del Uruguay Montevideo, Uruguay Disponible en: http://www.redalyc.org/articulo.oa?id=52408804 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Comunicaciones de la Sociedad Malacológica del Uruguay ISSN 0037- 8607 9 (88): 381 – 411. 2005 LISTA SISTEMÁTICA DE LOS MOLUSCOS MARINOS Y ESTUARINOS DEL CUATERNARIO DE URUGUAY Cristhian Clavijo § , Fabrizio Scarabino § , Alejandra Rojas * & Sergio Martínez * R ESUMEN Hasta el momento han sido citadas 142 especies de moluscos marinos y estuarinos para el Cuaternario de Uruguay. Esta fauna está compuesta taxonómicamente de la siguiente forma: Polyplacophora (2 especies), Scaphopoda (1), Gastropoda (66) y Bivalvia (73). PALABRAS CLAVE: Holoceno, Pleistoceno, Polyplacophora, Scaphopoda, Gastropoda, Bivalvia, Atlántico Sudoccidental. A BSTRACT Systematic list of the marine and estuarine molluscs from the Quaternary of Uruguay. Until now 142 species of marine and estuarine molluscs have been recorded from the Quaternary of Uruguay. This fauna is taxonomically composed as follows: Polyplacophora (2 species), Scaphopoda (1), Gastropoda (66) and Bivalvia (73). KEY WORDS: Holocene, Pleistocene, Polyplacophora, Scaphopoda, Gastropoda, Bivalvia, Southwestern Atlantic. INTRODUCCIÓN pobremente estudiados, constituyendo un particular ejemplo de los desafíos a superar.
    [Show full text]
  • New Pest Response Guidelines
    United States Department of Agriculture New Pest Response Marketing and Regulatory Guidelines Programs Animal and Plant Health Giant African Snails: Inspection Service Snail Pests in the Family Cooperating State Departments of Achatinidae Agriculture April 23, 2007 New Pest Response Guidelines Giant African Snails: Snail Pests in the Family Achatinidae April 23, 2007 New Pest Response Guidelines. Giant African Snails: Snail Pests in the Family Achatinidae was prepared by the Mollusk Action Plan Working Group and edited by Patricia S. Michalak, USDA–APHIS–PPQ–Manuals Unit. Cite this report as follows: USDA–APHIS. 2005. New Pest Response Guidelines. Giant African Snails: Snail Pests in the Family Achatinidae. USDA–APHIS–PPQ–Emergency and Domestic Programs–Emergency Planning, Riverdale, Maryland. http://www.aphis.usda.gov/ import_export/plants/manuals/index.shtml This report was originally published by PPQ–Pest Detection and Management Programs (PDMP) on March 21, 2005. It was updated by PPQ–Emergency and Domestic Programs–Emergency Planning on April 23, 2007. Richard Dunkle, Deputy Administrator March 21, 2005 USDA–APHIS–PPQ Emergency and Domestic Programs Emergency Planning Joel Floyd, Team Leader 4700 River Road Unit 137 Riverdale, Maryland 20737 Telephone: 310/734-4396 [email protected] Program Safety Consumption of snails and slugs, or of vegetables and fruits contaminated by snails and slugs, may lead to infection by pathogens that are easily transmitted by these pests. Wear rubber or latex gloves when handling mollusks, associated soil, excrement or other materials that may have come Important in contact with the snails. Immediately after removing protective gloves, thoroughly wash hands with hot soapy water and rinse well.
    [Show full text]
  • A Molecular Phylogeny of the Patellogastropoda (Mollusca: Gastropoda)
    ^03 Marine Biology (2000) 137: 183-194 ® Spnnger-Verlag 2000 M. G. Harasevvych A. G. McArthur A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda) Received: 5 February 1999 /Accepted: 16 May 2000 Abstract Phylogenetic analyses of partiaJ J8S rDNA formia" than between the Patellogastropoda and sequences from species representing all living families of Orthogastropoda. Partial 18S sequences support the the order Patellogastropoda, most other major gastro- inclusion of the family Neolepetopsidae within the su- pod groups (Cocculiniformia, Neritopsma, Vetigastro- perfamily Acmaeoidea, and refute its previously hy- poda, Caenogastropoda, Heterobranchia, but not pothesized position as sister group to the remaining Neomphalina), and two additional classes of the phylum living Patellogastropoda. This region of the Í8S rDNA Mollusca (Cephalopoda, Polyplacophora) confirm that gene diverges at widely differing rates, spanning an order Patellogastropoda comprises a robust clade with high of magnitude among patellogastropod lineages, and statistical support. The sequences are characterized by therefore does not provide meaningful resolution of the the presence of several insertions and deletions that are relationships among higher taxa of patellogastropods. unique to, and ubiquitous among, patellogastropods. Data from one or more genes that evolve more uni- However, this portion of the 18S gene is insufficiently formly and more rapidly than the ISSrDNA gene informative to provide robust support for the mono- (possibly one or more
    [Show full text]
  • (Mollusca: Gastropoda: Turridae) from the Campos Basin, Southeast Brazil
    Scientia Marina 74(3) September 2010, 471-481, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2010.74n3471 Deep-water Drilliinae, Cochlespirinae and Oenopotinae (Mollusca: Gastropoda: Turridae) from the Campos Basin, southeast Brazil RAQUEL MEDEIROS ANDRADE FIGUEIRA and RICARDO SILVA ABSALÃO Departamento de Zoologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-590 Rio de Janeiro, Rio de Janeiro, Brasil. E-mail: [email protected] SUMMARY: Samples of a soft-bottom community from the continental slope of Campos Basin, off southeast Brazil, were obtained between 2001 and 2003 by the Research Vessel “Astro-Garoupa” with a 0.25 m2 box corer or by dredging with a Charcot dredge. A total of 177 samples were taken at depths ranging from 700 to 1950 m. Mollusks were present at all of the stations and among Gastropoda the Turridae showed the highest diversity. Within the family Cochlespirinae we found: Leucosyrinx tenoceras (Dall, 1889), L. verrillii (Dall, 1881), expanding the known distribution of the latter species farther south, and L.? subgrundifera (Dall, 1888), which is the first record of this species for the South Atlantic and the shallowest depth at which it has ever been found. Within the family Drilliinae we found Splendrillia centimata (Dall, 1889), also the first record of this species for the South Atlantic and its shallowest depth. Within the subfamily Oenopotinae we describe here three new species in the genus Oenopota Mörch, 1852: O. seraphina n. sp., O. diabula n. sp. and O. carioca n. sp. Keywords: deep-water, Turridae, Leucosyrinx, Splendrillia, Oenopota, Southwestern Atlantic, Brazil.
    [Show full text]
  • Atlantic Area Eunis Habitats Adding New Habitat Types from European Atlantic Coast to the EUNIS Habitat Classification
    Atlantic Area Eunis Habitats Adding new habitat types from European Atlantic coast to the EUNIS Habitat Classification MeshAtlantic Technical Report Nº 3/2013 September 2013 Atlantic Area Eunis Habitats Adding new habitat types from European Atlantic coast to the EUNIS Habitat Classification MeshAtlantic Technical Report Nº 3/2013 September 2013 Citation: Monteiro, P., Bentes, L., Oliveira, F., Afonso, C., Rangel, M., Alonso, C., Mentxaka, I., Germán Rodríguez, J., Galparsoro, I., Borja, A., Chacón, D., Sanz Alonso, J.L., Guerra, M.T., Gaudêncio, M.J., Mendes, B., Henriques, V., Bajjouk, T., Bernard, M., Hily, C., Vasquez, M., Populus, J., Gonçalves, J.M.S. (2013). Atlantic Area Eunis Habitats. Adding new habitat types from European Atlantic coast to the EUNIS Habitat Classification. Technical Report No.3/2013 - MeshAtlantic, CCMAR-Universidade do Algarve, Faro, 72 pp.. CONTENTS SUMMARY ............................................................................................................................. 1 INTRODUCTION ..................................................................................................................... 1 OBJECTIVES ................................................................................................................... 1 CASE STUDIES ........................................................................................................................ 2 CASE STUDY 1 Portugal - Algarve ...........................................................................................2 INTRODUCTION
    [Show full text]