Avoiding Scheduler Subversion Using Scheduler–Cooperative Locks
Avoiding Scheduler Subversion using Scheduler–Cooperative Locks Yuvraj Patel, Leon Yang*, Leo Arulraj+, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin–Madison Abstract 1 Introduction We introduce the scheduler subversion problem, where In the modern shared datacenter, scheduling of resources is lock usage patterns determine which thread runs, thereby sub- of central importance [30, 41, 54, 60]. Applications and ser- verting CPU scheduling goals. To mitigate this problem, we vices, whether within a single organization or from many com- introduce Scheduler-Cooperative Locks (SCLs), a new family peting ones, each place strong demands on compute, memory, of locking primitives that controls lock usage and thus aligns network, and storage resources; as such, scalable and effec- with system-wide scheduling goals; our initial work focuses tive scheduling is required to ensure that no single user or on proportional share schedulers. Unlike existing locks, SCLs application receives more than its desired share. provide an equal (or proportional) time window called lock op- Of particular importance in datacenters is CPU scheduling, portunity within which each thread can acquire the lock. We as recent studies have shown [39]. An ideal CPU scheduler design and implement three different scheduler-cooperative should be able to decide what runs on a given CPU at any locks that work well with proportional-share schedulers: a given moment in time. In doing so, the CPU scheduler can user-level mutex lock (u-SCL), a reader-writer lock (RW- optimize for fair allocation [5, 57], low latency [51], perfor- SCL), and a simplified kernel implementation (k-SCL).
[Show full text]