Process Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IEEE Std 1003.1-2008
This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-911530 INTERNATIONAL ISO/IEC/ STANDARD IEEE 9945 First edition 2009-09-15 Information technology — Portable Operating System Interface (POSIX®) Base Specifications, Issue 7 Technologies de l'information — Spécifications de base de l'interface pour la portabilité des systèmes (POSIX ®), Issue 7 Reference number ISO/IEC/IEEE 9945:2009(E) Copyright © 2001-2008, IEEE and The Open Group. All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-911530 ISO/IEC/IEEE 9945:2009(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor IEEE accepts any liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and IEEE members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or IEEE at the address given below. -
The Design and Implementation of Multiprocessor Support for an Industrial Operating System Kernel
Blekinge Institute of Technology Research Report 2005:06 The Design and Implementation of Multiprocessor Support for an Industrial Operating System Kernel Simon Kågström Håkan Grahn Lars Lundberg Department of Systems and Software School of Engineering Blekinge Institute of Technology The Design and Implementation of Multiprocessor Support for an Industrial Operating System Kernel Simon Kågström, Håkan Grahn, and Lars Lundberg Department of Systems and Software Engineering School of Engineering Blekinge Institute of Technology P.O. Box 520, SE-372 25 Ronneby, Sweden {ska, hgr, llu}@bth.se Abstract The ongoing transition from uniprocessor to multiprocessor computers requires support from the op- erating system kernel. Although many general-purpose multiprocessor operating systems exist, there is a large number of specialized operating systems which require porting in order to work on multipro- cessors. In this paper we describe the multiprocessor port of a cluster operating system kernel from a producer of industrial systems. Our initial implementation uses a giant locking scheme that serializes kernel execution. We also employed a method in which CPU-local variables are placed in a special sec- tion mapped to per-CPU physical memory pages. The giant lock and CPU-local section allowed us to implement an initial working version with only minor changes to the original code, although the giant lock and kernel-bound applications limit the performance of our multiprocessor port. Finally, we also discuss experiences from the implementation. 1 Introduction A current trend in the computer industry is the transition from uniprocessors to various kinds of multipro- cessors, also for desktop and embeddedsystems. Apart from traditional SMP systems, many manufacturers are now presenting chip multiprocessors or simultaneous multithreaded CPUs [9, 15, 16] which allow more efficient use of chip area. -
Operating Systems Processes
Operating Systems Processes Eno Thereska [email protected] http://www.imperial.ac.uk/computing/current-students/courses/211/ Partly based on slides from Julie McCann and Cristian Cadar Administrativia • Lecturer: Dr Eno Thereska § Email: [email protected] § Office: Huxley 450 • Class website http://www.imperial.ac.uk/computing/current- students/courses/211/ 2 Tutorials • No separate tutorial slots § Tutorials embedded in lectures • Tutorial exercises, with solutions, distributed on the course website § You are responsible for studying on your own the ones that we don’t cover during the lectures § Let me know if you have any questions or would like to discuss any others in class 3 Tutorial question & warmup • List the most important resources that must be managed by an operating system in the following settings: § Supercomputer § Smartphone § ”Her” A lonely writer develops an unlikely relationship with an operating system designed to meet his every need. Copyright IMDB.com 4 Introduction to Processes •One of the oldest abstractions in computing § An instance of a program being executed, a running program •Allows a single processor to run multiple programs “simultaneously” § Processes turn a single CPU into multiple virtual CPUs § Each process runs on a virtual CPU 5 Why Have Processes? •Provide (the illusion of) concurrency § Real vs. apparent concurrency •Provide isolation § Each process has its own address space •Simplicity of programming § Firefox doesn’t need to worry about gcc •Allow better utilisation of machine resources § Different processes require different resources at a certain time 6 Concurrency Apparent Concurrency (pseudo-concurrency): A single hardware processor which is switched between processes by interleaving. -
Filesystem Performance on Freebsd
Filesystem Performance on FreeBSD Kris Kennaway [email protected] BSDCan 2006, Ottawa, May 12 Introduction ● Filesystem performance has many aspects ● No single metric for quantifying it ● I will focus on aspects that are relevant for my workloads (concurrent package building) ● The main relevant filesystem workloads seem to be – Concurrent tarball extraction – Recursive filesystem traversals ● Aim: determine relative performance of FreeBSD 4.x, 5.x and 6.x on these workloads – Overall performance and SMP scaling – Evaluate results of multi-year kernel locking strategy as it relates to these workloads Outline ● SMP architectural differences between 4/5/6.x ● Test methodology ● Hardware used ● Parallel tarball extraction test – Disk array and memory disk ● Scaling beyond 4 CPUs ● Recursive filesystem traversal test ● Conclusions & future work SMP Architectural Overview ● FreeBSD 4.x; rudimentary SMP support – Giant kernel lock restricts kernel access to one process at a time – SPL model; interrupts may still be processed in parallel ● FreeBSD 5.x; aim towards greater scalability – Giant-locked to begin with; then finer-grained locking pushdown ● FreeBSD 5.3; VM Giant-free ● FreeBSD 5.4; network stack Giant-free (mostly) ● Many other subsystems/drivers also locked – Interrupts as kernel threads; compete for common locks (if any) with everything else ● FreeBSD 6.x; – Consolidation; further pushdown; payoff! – VFS subsystem, UFS filesystem Giant-free FreeBSD versions ● FreeBSD 4.11-STABLE (11/2005) – Needed for amr driver fixes after 4.11-RELEASE ● FreeBSD 5.4-STABLE (11/05) – No patches needed ● FreeBSD 6.0-STABLE (11/05) – patches: ● Locking reworked in amr driver by Scott Long for better performance ● All relevant changes merged into FreeBSD 6.1 – A kernel panic was encountered at very high I/O loads ● Also fixed in 6.1 Test aims and Methodology ● Want to measure – overall performance difference between FreeBSD branches under varying (concurrent process I/O) loads – scaling to multiple CPUs ● Avoid saturating hardware resources (e.g. -
On Intelligent Mitigation of Process Starvation in Multilevel Feedback Queue Scheduling Joseph E
Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Computer Science Theses Department of Computer Science Spring 4-20-2017 On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling Joseph E. Brown Kennesaw State University Follow this and additional works at: http://digitalcommons.kennesaw.edu/cs_etd Part of the Computational Engineering Commons Recommended Citation Brown, Joseph E., "On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling" (2017). Master of Science in Computer Science Theses. 8. http://digitalcommons.kennesaw.edu/cs_etd/8 This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling Master of Science in Computer Science Thesis By Joseph E Brown MSCS Student Department of Computer Science College of Computing and Software Engineering Kennesaw State University, USA Submitted in partial fulfillment of the Requirements for the degree of Master of Science in Computer Science November 2016 On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling This thesis approved for recommendation to the Graduate Council. 2 Kennesaw State University College of Computing and Software Engineering Thesis Title: On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Schedul- ing . Author: Joseph E Brown. Department: Computer Science. Approved for Thesis Requirements of the Master of Science Degree Thesis Advisor: Ken Hoganson Date Thesis Reader: Dr. -
USENIX October Proof 3
FOR THE PAST COUPLE OF MONTHS, I have become absorbed in operating sys- RIK FARROW tems. My quest began with some consult- ing regarding security features of the cur- rent Linux kernel, including SELinux, then plunged even deeper during the HotOS workshop. I do not pretend to be a kernel hacker, but I am very interested in what musings goes on with the design and implementa- Rik Farrow provides UNIX and Internet security con- tion of operating system software. sulting and training. He is the author of UNIX System Security and System Administrator’s Guide to System V and editor of the SAGE Short Topics in System Like some others, I had wondered what had hap- Administration series. pened to FreeBSD 4’s stellar performance when Free- [email protected] BSD 5 appeared. Instead of getting faster, FreeBSD was slower. If I had bothered digging deeper, I would have learned that this was the result of far-reaching changes in the FreeBSD kernel. Michael W. Lucas ex- plains these changes in his article, which in turn is based on a talk given by Robert Watson about modify- ing the kernel to support SMP (symmetric multipro- cessing). And perhaps by the time you read this col- umn, FreeBSD 6 will have appeared, ready to utilize the new multiprocessor cores that are popping up. Lucas explains just why the transition from single- threaded to multi-threaded kernel takes so long and is so hard to do right. I first understood the importance of the Big Giant Lock when I was reviewing an early multiprocessing server that used SPARC processors. -
Openextensions POSIX Conformance Document
z/VM Version 7 Release 1 OpenExtensions POSIX Conformance Document IBM GC24-6298-00 Note: Before you use this information and the product it supports, read the information in “Notices” on page 73. This edition applies to version 7, release 1, modification 0 of IBM z/VM (product number 5741-A09) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2018-09-12 © Copyright International Business Machines Corporation 1993, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents List of Tables........................................................................................................ ix About This Document............................................................................................xi Intended Audience......................................................................................................................................xi Conventions Used in This Document.......................................................................................................... xi Where to Find More Information.................................................................................................................xi Links to Other Documents and Websites.............................................................................................. xi How to Send Your Comments to IBM....................................................................xiii Summary of Changes for z/VM -
Thread Scheduling in Multi-Core Operating Systems Redha Gouicem
Thread Scheduling in Multi-core Operating Systems Redha Gouicem To cite this version: Redha Gouicem. Thread Scheduling in Multi-core Operating Systems. Computer Science [cs]. Sor- bonne Université, 2020. English. tel-02977242 HAL Id: tel-02977242 https://hal.archives-ouvertes.fr/tel-02977242 Submitted on 24 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ph.D thesis in Computer Science Thread Scheduling in Multi-core Operating Systems How to Understand, Improve and Fix your Scheduler Redha GOUICEM Sorbonne Université Laboratoire d’Informatique de Paris 6 Inria Whisper Team PH.D.DEFENSE: 23 October 2020, Paris, France JURYMEMBERS: Mr. Pascal Felber, Full Professor, Université de Neuchâtel Reviewer Mr. Vivien Quéma, Full Professor, Grenoble INP (ENSIMAG) Reviewer Mr. Rachid Guerraoui, Full Professor, École Polytechnique Fédérale de Lausanne Examiner Ms. Karine Heydemann, Associate Professor, Sorbonne Université Examiner Mr. Etienne Rivière, Full Professor, University of Louvain Examiner Mr. Gilles Muller, Senior Research Scientist, Inria Advisor Mr. Julien Sopena, Associate Professor, Sorbonne Université Advisor ABSTRACT In this thesis, we address the problem of schedulers for multi-core architectures from several perspectives: design (simplicity and correct- ness), performance improvement and the development of application- specific schedulers. -
How Freebsd Boots: a Soft-Core MIPS Perspective Brooks Davis, Robert Norton, Jonathan Woodruff, Robert N
How FreeBSD Boots: a soft-core MIPS perspective Brooks Davis, Robert Norton, Jonathan Woodruff, Robert N. M. Watson Abstract We have implemented an FPGA soft-core, multithreaded, 64-bit MIPS R4000-style CPU called BERI to support research on the hardware/software interface. We have ported FreeBSD to this platform including support for mul- tithreaded and soon multicore CPUs. This paper describes the process by which a BERI system boots from CPU startup through the boot loaders, hand off to the kernel, and en- abling secondary CPU threads. Historically, the process of booting FreeBSD has been documented from a user perspec- tive or at a fairly high level. This paper aims to improve the documentation of the low level boot process for developers aiming to port FreeBSD to new targets. 1. Introduction Figure 1: BERIpad with application launcher From its modest origins as a fork of 386BSD targeting Intel i386 class CPUs, FreeBSD has been ported to a range of architectures including DEC Alpha1, AMD x86_64 (aka The rest of this paper narrates the boot process with a amd64), ARM, Intel IA64, MIPS, PC98, PowerPC, and special focus on the places customization was required for Sparc64. While the x86 and Alpha are fairly homogeneous BERI. We begin by describing the BERI platform (Section targets with mechanics for detecting and adapting to spe- 2), and then in detail documents the kernel architecture- cific board and peripheral configurations, embedded systems specific boot process for FreeBSD on BERI: boot loader platforms like ARM, MIPS, and PowerPC are much more (Section 3) and kernel boot process (Section 4). -
Real-Time Audio Servers on BSD Unix Derivatives
Juha Erkkilä Real-Time Audio Servers on BSD Unix Derivatives Master's Thesis in Information Technology June 17, 2005 University of Jyväskylä Department of Mathematical Information Technology Jyväskylä Author: Juha Erkkilä Contact information: [email protected].fi Title: Real-Time Audio Servers on BSD Unix Derivatives Työn nimi: Reaaliaikaiset äänipalvelinsovellukset BSD Unix -johdannaisjärjestelmissä Project: Master's Thesis in Information Technology Page count: 146 Abstract: This paper covers real-time and interprocess communication features of 4.4BSD Unix derived operating systems, and especially their applicability for real- time audio servers. The research ground of bringing real-time properties to tradi- tional Unix operating systems (such as 4.4BSD) is covered. Included are some design ideas used in BSD-variants, such as using multithreaded kernels, and schedulers that can provide real-time guarantees to processes. Factors affecting the design of real- time audio servers are considered, especially the suitability of various interprocess communication facilities as mechanisms to pass audio data between applications. To test these mechanisms on a real operating system, an audio server and a client utilizing these techniques is written and tested on an OpenBSD operating system. The performance of the audio server and OpenBSD is analyzed, with attempts to identify some bottlenecks of real-time operation in the OpenBSD system. Suomenkielinen tiivistelmä: Tämä tutkielma kattaa reaaliaikaisuus- ja prosessien väliset kommunikaatio-ominaisuudet, keskittyen 4.4BSD Unix -johdannaisiin käyt- töjärjestelmiin, ja erityisesti siihen kuinka hyvin nämä soveltuvat reaaliaikaisille äänipalvelinsovelluksille. Tutkimusalueeseen sisältyy reaaliaikaisuusominaisuuk- sien tuominen perinteisiin Unix-käyttöjärjestelmiin (kuten 4.4BSD:hen). Mukana on suunnitteluideoita, joita on käytetty joissakin BSD-varianteissa, kuten säikeis- tetyt kernelit, ja skedulerit, jotka voivat tarjota reaaliaikaisuustakeita prosesseille. -
System Calls & Signals
CS345 OPERATING SYSTEMS System calls & Signals Panagiotis Papadopoulos [email protected] 1 SYSTEM CALL When a program invokes a system call, it is interrupted and the system switches to Kernel space. The Kernel then saves the process execution context (so that it can resume the program later) and determines what is being requested. The Kernel carefully checks that the request is valid and that the process invoking the system call has enough privilege. For instance some system calls can only be called by a user with superuser privilege (often referred to as root). If everything is good, the Kernel processes the request in Kernel Mode and can access the device drivers in charge of controlling the hardware (e.g. reading a character inputted from the keyboard). The Kernel can read and modify the data of the calling process as it has access to memory in User Space (e.g. it can copy the keyboard character into a buffer that the calling process has access to) When the Kernel is done processing the request, it restores the process execution context that was saved when the system call was invoked, and control returns to the calling program which continues executing. 2 SYSTEM CALLS FORK() 3 THE FORK() SYSTEM CALL (1/2) • A process calling fork()spawns a child process. • The child is almost an identical clone of the parent: • Program Text (segment .text) • Stack (ss) • PCB (eg. registers) • Data (segment .data) #include <sys/types.h> #include <unistd.h> pid_t fork(void); 4 THE FORK() SYSTEM CALL (2/2) • The fork()is one of the those system calls, which is called once, but returns twice! Consider a piece of program • After fork()both the parent and the child are .. -
Evaluating Locking Schemes in the Freebsd Kernel
Evaluating Locking Schemes in the FreeBSD Kernel james francis toy iv Advisor: David Hemmendinger 20100321 Abstract This project is concerned with locking strategies in the FreeBSD unix kernel. Locks prevent race conditions in a multi-programming environ- ment. At present the FreeBSD kernel employs a GIANT_LOCK to pre- vent race conditions by locking access to the entire kernel. This method may inhibit concurrency; however, it is a simple and easy way to ensure correctness. The goal of this project is to see if fine-grained locking (FGL), an alternative to the GIANT_LOCK, promotes concurrency and through- put by locking only critical shared resources. FGL was implemented for two kernel subsystems, and we measured the time that a thread was wait- ing to acquire a lock; FGL showed zero wait time and the GIANT_LOCK showed non-zero wait time. 1 An Introduction to Locking Locking and synchronization were developed to prevent processes from interfer- ing with one another when having access to shared resources. This is important because in a multi-threaded environment these situations often arise since it is more efficient to execute programs in parallel. This contention for shared data is more commonly described as a “race condition” where multiple pro- cesses are racing to a shared resource. These race conditions can be resolved by mutual exclusion (ensures only one process is using a shared resource at a time) which is behavior provided by the locking mechanisms currently employed by the FreeBSD kernel. The purpose of this project is to analyze the current locking scheme in the FreeBSD kernel; attempt to implement a more efficient 1 locking method, and compare the initial method versus the proposed method in this project.