Saturday, August 29Th Sunday, August 30Th

Total Page:16

File Type:pdf, Size:1020Kb

Saturday, August 29Th Sunday, August 30Th Saturday, August 29th Course 2 Course 3 Course 7 Introduction to High Course 6 Hands on Proteomic Data Analysis with Resolution Mass Data Science & Data Course 1 Metabolomics (GNPS) Course 4 PatternLab Spectrometry for Integration Fundamentals of Tutors: Carla Porto da Top Down Coordinator: Paulo Costa Qualitative and Curso 5 MaxQuant/Perseus Coordinators: Mass pectrometry Silva (SUM - BRA) Proteomics Carvalho 9:00 a.m. Quantitative course (proteomics) Patrick Mathias (DLM - Tutor: Gianluca Giorgi Pieter Dorrestein Tutor: Rafael Melani Tutors: Bioanalysis Tutor: Jürgen Cox (MPIB) USA) (UNISI - IT) (UCSD) (NU - USA) Marlon Dias Mariano dos Santos Tutor: Ragu Aline Martins (CEMBIO Ricardo R. da Silva Milan Avila Clasen Ramanathan (Pfizer - - ESP) (UCSD - USA) Louise Kurt USA) 12:30 p.m. Lunch Registration 5:00 - 08:00 p.m. a.m. 2:00 p.m. Course 1 Course 2 Course 3 Course 4 Course 5 Course 6 Course 7 5:00 p.m. End of session Sunday, August 30th Course 2 Course 3 Course 7 Introduction to High Course 6 Hands on Proteomic Data Analysis with Resolution Mass Data Science & Data Course 1 Metabolomics (GNPS) Course 4 PatternLab Spectrometry for Integration Fundamentals of Tutors: Carla Porto da Top Down Coordinator: Paulo Costa Qualitative and Curso 5 - MaxQuant/Perseus Coordinators: Mass pectrometry Silva (SUM - BRA) Proteomics Carvalho 9:00 a.m. Quantitative course (proteomics) Patrick Mathias (DLM - Tutor: Gianluca Giorgi Pieter Dorrestein Tutor: Rafael Melani Tutors: Bioanalysis Tutor: Jürgen Cox (MPIB) USA) (UNISI - IT) (UCSD) (NU - USA) Marlon Dias Mariano dos Santos Tutor: Ragu Aline Martins (CEMBIO Ricardo R. da Silva Milan Avila Clasen Ramanathan (Pfizer - - ESP) (UCSD - USA) Louise Kurt USA) 10:00 a.m. Coffee Break 10:20 a.m. Course 1 Course 2 Course 3 Course 4 Course 5 Course 6 Course 7 1:00 p.m. End of session 5:00 p.m. OPENING CEREMONY Registration 6:00 - 11:00 p.m. a.m. PLENARY LECTURE 6:00 p.m. Jana Roithová , Radboud University - Faculty of Sciences 7:00 p.m. OPENING DINNER Fundamental Mass Intrumentation and Chalenges and Life Science Health Sciences Social Events Spectrometry Methods Aplications Monday, August 31st PLENARY LECTURE 9:00 - 9:45 a.m. John R. Yates III, The Scripps Research Institute M01 - MS Analysis of M03 - Environmental M04 - Multiomics Forensic Sci. M02 - Biopolymers M05 - Clinical proteomics analysis KN: Erica Forsberg Evidence KN: Catherine E. KN: Daniel Martins de Souza KN: Encarnación (SDSU - USA) 9:50 -11:50 a.m. KN: Soon Costello (BUM - USA) (SUC - BRA) Moyano (UB - ESP) Chair: Alessandra Chair: Jose Luiz da Chair: Catherine E. Chair: Daniel Martins de Chair: Encarnación Sussulini (UNICAMP - Costa (UNICAMP - Costello (BUM - USA) Souza (SUC - BRA) Moyano (UB - ESP) BRA) BRA) Coffee Break/ Poster sessions 12:00 p.m. MPS01 - MPS10 (Odd numbers 12:00 p.m. - 1:20 .pm.) LUNCH SYMPOSIA ( 12:45 p.m. - 2:00 p.m.) 12:45 p.m. Company 01 Company 02 Company 03 Company 04 Poster sessions 1:30 p.m. MPS01 - MPS10 (Even numbers 1:30 a.m. - 2:50 pm) M07 - Reaction M06 - Human M08 - CE-MS KN: M09 - Clinical Mechanism & Elusive M10 - MS Tools in Doping & Proteome Project Philip Britz-McKibbin Diagnosis Intermediates Toxicology Registration 5:00 - p.m. 8:30 a.m. KN: Soon (McU-CA) KN: Dr. Livia Eberlin 3:00 - 5:00 p.m. KN: Marcos N. Eberlin KN: Soon Chair: Gilberto Chair: Ana Valéria (UT - USA) (M-SP-BRA) Chair: Monica Costa Padilha Barbosa Domont Colnaghi Simionato Chair: Livia Eberlin Chair: Thiago Correra (FURJ - BRA) (FURJ - BRA) (UNICAMP - BRA) (UT - USA) (USP - BRA) 5:00 p.m. Coffee Break Workshop M01 Coordinator: Robert Workshop M02 Workshop M03 Workshop M04 Workshop M05 5:20 p.m. Winkler (CINVESTAV - MEX) 7:00 p.m. End of Session 8:00 p.m. Hospitality suites Fundamental Mass Intrumentation and Chalenges and Life Science Health Sciences Social Events Spectrometry Methods Aplications Tuesday, September 1st PLENARY LECTURE 9:00 - 9:45 a.m. Alexander A. Makarov, Thermo Fisher Scientific T02 - Major Ionization T03 - Clinical Research T01 - Food additives Techniques: Advances T04 - Petroleomics KN: Nigel Clarke (QDNI - T05 -Sportomics & contaminants and New Applications KN: Ryan Rodgers USA) KN: Soon KN: Soon KN: Rosa Erra-Balsells (NSF-USA) 9:50 -11:50 a.m. Chair: Valdemir Chair: Henrique Marcelo Chair: Renato Zanella (BAU - AR) Chair: Boniek Gontijo Melechco Carvalho Pereira (UFSCAR - BRA) (FUSM - BRA) Chair: Rosa Erra- Vaz (FUG - BRA) (FG - BRA) Balsells (BAU - AR) Coffee Break/ Poster sessions 12:00 p.m. TPS01 - TPS10 (Odd numbers 12:00 p.m. - 1:20 p.m.) LUNCH SYMPOSIA ( 12:45 p.m. - 2:00 p.m.) 12:45 p.m. Company 05 Company 06 Company 07 Company 08 Poster sessions 1:30 p.m. TPS01 - TPS10 (Even numbers 1:30 a.m. - 2:50 p.m.) T08 - Mass T06 - Safe & Valuable T07 - Translational Spectrometry T09 - Biofuels Food Research and Data T10 - Registration 5:00 - p.m. 8:30 a.m. Challenges and KN: Nelson Vinueza KN: Horacio Heinzen Integration Metabolomics/Lipidomics Applications KN: Benitez (NCSU) (URU - URY) KN: Jules Griffin (ICL - KN: Michal Holčapek (UP - CR) 3:00 - 5:00 p.m. Maria Helena Chair: Debora de Chair: Paula Grossi UK) Chair: Michal Holčapek (UP - Florêncio (UL - PRT) Almeida Azevedo Ribeiro (Shimadzu - Chair: Aline Martins CR) Chair: Maria Helena (FURJ - BRA) BRA) (UCEU - ESP) Florêncio (UL - PRT) 5:00 p.m. Coffee Break Workshop T01 Coordinator: 5:20 p.m. Workshop T02 Workshop T03 Workshop T04 Workshop T05 Norberto Peporine Lopes (USP - BRA) 7:00 p.m. End of Session 8:00 p.m. Hospitality suites Fundamental Mass Intrumentation and Chalenges and Life Science Health Sciences Social Events Spectrometry Methods Aplications Wednesday, September 2nd PLENARY LECTURE 9:00 - 9:45 a.m. Michael T. Bowers - UC Santa Barbara - Chemistry & Biochemistry Faculty W04 - High W02 - Resolution MS Qualitative W03 - Ms Imaging: W01 - applications W05 - Drugs Monitoring & Proteomics instrumentation Chemical ecology KN: Evgeny N Discovery KN: Kathryn Lilley (UC - KN: Ron M. A. Hereen 9:50 - 11:50 a.m. KN: Soon Nikolaev (CTBS - KN: Soon UK) (MU - NLD) Chair: Eduardo Jorge RUS) Chair: Regina Vincenzi Chair: Alexandre K. Chair: Emmanuelle Pilau (SUM - BRA) Chair: Evgeny N Oliveira (UFSCAR - BRA) Tashima (Unifesp - Claude (Waters - UK) Nikolaev (CTBS - BRA) RUS) 12:00 p.m. Coffee Break/ Poster sessions LUNCH SYMPOSIA ( 12:45 p.m. - 2:00 p.m.) 12:45 p.m. Company 09 Company 10 Company 11 Company 12 Poster sessions 1:30 p.m. WPS01 - WPS10 (Even numbers 1:30 a.m. - 2:50 p.m.) Registration 5:00 - p.m. 8:30 a.m. W08 - W07 - Cancer Development & W06 - Microbiology Proteomics application in ion W10 - Pharmaceuticals KN: KN: Pieter C. KN: Gyorgy Marko- mobility MS W09 - JMS Award Soon 3:00 - 5:00 p.m. Dorrestein (UCSD) Varga (UL - SWE) KN: Brian Clowers Symposium Chair: Maria Francesca Riccio Chair: Diego Magno Chair: Gyorgy Marko- (WSU - USA) (Synvia - BRA) Assis (Bruker - BRA) Varga (UL - SWE) Chair: Alexandre F. Gomes (Waters - BRA) 5:00 p.m. Praia Break Fundamental Mass Intrumentation and Chalenges and Life Science Health Sciences Social Events Spectrometry Methods Aplications Thursday, September 3rd PLENARY LECTURE 9:00 - 9:45 a.m. Dr. Pieter Dorrestein - University of California Th02 - Gas phase: ion Th03 - Ambient MS Th04 - Polymers Th05 - Glycomics, sacharides Th01 - Natural chemistry & and New ionization KN: Jana and glycoconjugates products thermodinamics Methods Falkenhagen (BAM- KN: Andras Guttman (UD - 9:50 - 11:50 a.m. KN: Soon KN: Hilkka Kenttamaa KN: Jentaie Shiea DEU) HUN) Chair: Giorgis Isaac (PU - USA) (NSYSU) Chair: Jana Chair: Giuseppe Palmisano (Waters - USA) Chair: Hilkka Chair: Rodinei Augusti Falkenhagen (BAM- (USP - BRA) Kenttamaa (PU - USA) (FUMG - BRA) DEU) Coffee Break/ Poster sessions 12:00 p.m. ThPS01 - ThPS10 (Odd numbers 12:00 p.m. - 1:20 p.m.) LUNCH SYMPOSIA ( 12:45 p.m. - 2:00 p.m.) 12:45 p.m. Company 13 Company 14 Company 15 Company 16 Poster sessions 1:30 p.m. ThPS01 - ThPS10 (Even numbers 1:30 a.m. - 2:50 p.m.) Th06 - Th07 - Informatic tools Environmental MS and data analysis Th09 - MS imaging Th10 - Biological Mass Th08 - LC-MS KN: Registration 5:00 - p.m. 8:30 a.m. KN: Elena Stashenko KN: Yasset Perez aplications Spectrometry Soon 3:00 - 5:00 p.m. (IUS – COL) Riverol (EBI - UK) KN: Soon KN: Soon Chair: Oscar Cabrices Chair: Jose Oscar Chair: Paulo Costa Chair: Roy Martin Chair: Taicia Fill (IQ-UNCAMP- (SCIEX - BRA) Willian Vega Bustillos Carvalho (Fiocruz - (Waters - USA) BRA) (ISTI - BRA) BRA) 5:00 p.m. Coffee Break 5:10 p.m. Thomson Medal and Curt Brunnée Award Ceremony 5:30 p.m. Thomson Medalist - PLENARY LECTURE 1 6:00 p.m. Thomson Medalist – PLENARY LECTURE 2 6:30 p.m. Curt Brunnée - PLENARY LECTUR 7:00 p.m. End of Session 8:00 p.m. Gala Dinner* Fundamental Mass Intrumentation and Chalenges and Life Science Health Sciences Social Events Spectrometry Methods Aplications Friday, September 4th PLENARY LECTURE 9:00 9:45 a.m. Valérie Gabelica, Université de Bordeaux, FRANCE F04 - FTMS and F02 - Native MS and F01 - F03 - Single Cell innovative methods Structural Proteomics F05 - System Biology Phenomics KN: Jonathan for (bio)analysis KN: Soon KN: Soon 9:50 11:50 a.m. KN: Soon Sweedler (CLAS - USA) KN: Soon Chair: Fabio Cesar Chair: Hector Koolen (USA- Chair: Michael Murgu Chair: Jonathan Chair: Fábio C.S. Gozzo (UNICAMP - BRA) (Waters - BRA) Sweedler (CLAS - USA) Nogueira (FURJ - BRA) BRA) 12:00 p.m. PRESENTATION OF IMSC 2022 Registration 10:00 - 8:30 a.m. a.m. 12:30 p.m. Até logo!!!.
Recommended publications
  • Petroleomics
    Petroleomics A barrel load of compounds As the world’s petroleum supply dries up, Phillip Broadwith goes hunting for oil armed with a mass spectrometer, a chromatography column and state-of-the-art data-mining software THINKSTOCK 46 | Chemistry World | May 2010 www.chemistryworld.org Petroleum, or crude oil, is one by 0.0005Da – about the mass of an biggest FT-ICR spectrometer In short of the most complex naturally electron. has a 14.5 Tesla superconducting occurring chemical mixtures on Rodgers explains why FT-ICR Oil companies are magnet, but they are expecting a the planet. Each drop can contain MS has the upper hand when it looking to oil shale and 21T machine to come online later hundreds of thousands of different comes to resolution: it’s down to tar sands, as supplies of this year. To put that in perspective, types of molecules, from simple the magnets. The magnet separates lightweight oils run low a fridge magnet has a field of hydrocarbons to highly structurally ions of different masses within the Oil is a very complex about 0.1T and a 500MHz NMR diverse carboxylic acids, sulfur and spectrometer – charged particles mixture of molecules, spectrometer’s magnet comes in at nitrogen heterocycles and metal in electromagnetic fields start to and mass spectrometry is just under 12T. ‘What we’ve found salts. whirl around, and the frequency of used to reveal these and is that you can never have enough Some of these compounds this spinning depends on both the assess the suitability of resolution,’ says Rodgers. ‘As you go – like the hydrocarbons – are mass of the ion and the strength of new oil supplies higher and higher you can see more relatively chemically benign, but the magnetic field.
    [Show full text]
  • Novel Quadrupole Time-Of-Flight Mass Spectrometry for Shotgun Proteomics
    DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Novel quadrupole time-of-flight mass spectrometry for shotgun proteomics von Scarlet Svenja Anna-Maria Beck aus Tettnang 2016 ii Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Matthias Mann betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, den 25.04.2017 …………………………………………………………………………………………Scarlet Beck Dissertation eingereicht am 23.09.2016 1. Gutachter: Prof. Dr. Matthias Mann 2. Gutachter: Prof. Dr. Jürgen Cox Mündliche Prüfung am 04.11.2016 iii iv ABSTRACT Mass spectrometry (MS)-based proteomics has become a powerful technology for the identification and quantification of thousands of proteins. However, the coverage of complete proteomes is still very challenging due to the high sample complexity and the difference in protein concentrations. In data-dependent shotgun proteomics several peptides elute simultaneously from the column and are isolated by the quadrupole and fragmented by the collision cell one at a time. This method has two major disadvantages. On the one hand, a large number of eluting peptides cannot be targeted since the sequencing speeds of current instruments are too slow and on the other hand, peptides that only differ slightly in mass and elute together are co-isolated and co-fragmented, resulting in chimeric MS2 spectra. Therefore an urgent need for further developments and improvements of mass spectrometers remains. The aim of this thesis was to co-develop, evaluate and improve novel quadrupole time-of-flight (QTOF) mass spectrometers. In my first project I have described the developments and improvements of the hardware of the high-resolution QTOF mass spectrometer, the impact II, and have shown that this instrument can be used for very deep coverage of diverse proteomes as well as for accurate and reproducible quantification.
    [Show full text]
  • Classifying Petroleum Samples with Waters SYNAPT HDMS and Omics
    Classifying Petroleum Samples with Waters SYNAPT HDMS and Omics LLC PetroOrg Petroleomics Software Combines the value of Ion Mobility Mass Spectrometry (IM-MS) and accurate mass information with petroleomics data processing to easily characterize petroleum chemical composition ECONOMIC VALUE AND CHEMICAL COMPOSITION OF CRUDE OIL Benefits of using Waters The chemical composition of petroleum determines its economic value. Especially important SYNAPT HDMS and PetroOrg to economic value is the proportion of heteroatoms in crude oil, particularly molecules Petroleomics Software containing nitrogen, sulfur, and oxygen because these species contribute to solid deposition, ■■ Ion mobility in Waters SYNAPT flocculation, catalyst deactivation, storage instability, and refinery corrosion. Light sweet HDMS delivers enhanced crude are low in these heteroatoms, but the world supply of light sweet crude is diminishing, sample deconvolution thus resulting in a world-wide shift to heavier crudes that are rich in heteroatoms. Energy ■■ Easily classify petroleum samples companies seek better analytical methodologies to determine crude oil’s economic value using petroleomics methodology and the level of refining required in order to produce high-value products. and diagrams Analytical Characterization of Crude Oil ■■ Determining heteroatom Mass spectrometric analysis of petroleum is an attractive approach to fully characterizing composition of petroleum samples crude oils, including categorizing crude oil samples by their heteroatom content. Some aids in determining economic value of the earliest innovations in mass spectrometry were directed towards the petroleum ■■ Complementary to GC-MS and NMR industry. However, the extremely high complexity of crude oils offers a significant analyses of petroleum samples challenge to the analytical chemist. Added to that challenge is the difficulty of processing, ■■ The combination of Ion Mobility, visualizing, and interpreting the information rich mass spectral data.
    [Show full text]
  • Yale School of Public Health Symposium on Lifetime Exposures and Human Health: the Exposome; Summary and Future Reflections Caroline H
    Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections Caroline H. Johnson, Yale School of Public Health Toby J. Athersuch, Imperial College London Gwen W. Collman, National Institutes of Health Suraj Dhungana, Waters Corporation David F. Grant, University of Connecticut Dean Jones, Emory University Chirag J. Patel, Harvard Medical School Vasilis Vasiliou, Yale School of Public Health Publisher: Biomed Central LTD Publication Date: 2017-12-08 Type of Work: Report Publisher DOI: 10.1186/s40246-017-0128-0 Permanent URL: https://pid.emory.edu/ark:/25593/s6w0w Final published version: http://dx.doi.org/10.1186/s40246-017-0128-0 Copyright information: © 2017 The Author(s). This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). Accessed October 1, 2021 10:15 AM EDT Johnson et al. Human Genomics (2017) 11:32 DOI 10.1186/s40246-017-0128-0 MEETING REPORT Open Access Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections Caroline H. Johnson1*, Toby J. Athersuch2,3, Gwen W. Collman4, Suraj Dhungana5, David F. Grant6, Dean P. Jones7, Chirag J. Patel8 and Vasilis Vasiliou1* Abstract The exposome is defined as “the totality of environmental exposures encountered from birth to death” and was developed to address the need for comprehensive environmental exposure assessment to better understand disease etiology. Due to the complexity of the exposome, significant efforts have been made to develop technologies for longitudinal, internal and external exposure monitoring, and bioinformatics to integrate and analyze datasets generated.
    [Show full text]
  • Download on the Rawtools
    PARSING AND ANALYSIS OF MASS SPECTROMETRY DATA OF COMPLEX BIOLOGICAL AND ENVIRONMENTAL MIXTURES by Kevin Kovalchik B.S., Oregon State University, 2014 B.M., The University of Idaho, 2007 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (CHEMISTRY) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2019 © Kevin Kovalchik, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: PARSING AND ANALYSIS OF MASS SPECTROMETRY DATA OF COMPLEX BIOLOGICAL AND ENVIRONMENTAL MIXTURES submitted by Kevin A Kovalchik in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Examining Committee: David DY Chen Co-supervisor John V Headley Co-supervisor Roman Krems Supervisory Committee Member Ed Grant University Examiner Keng Chou University Examiner ii Abstract The chemical characterization of biological and environmental samples are areas of research which involve the analysis of highly complex chemical mixtures. While the samples from these two fields differ greatly in composition, they present similar challenges. Complex mixtures provide a challenge to the analytical chemist as compounds in the mixture can have matrix effects which interfere with the analysis. Indeed, these interfering compounds may even be analytes themselves. High resolution mass spectrometry, which separates and detects ions based on their mass-to-charge ratio, is a powerful tool in the analysis of such mixtures. The amount of data resulting from such analyses, however, can be intractable to manual analysis, necessitating the use of computational tools.
    [Show full text]
  • The 12Th North American FT MS Conference Program
    Florida State University 1800 East Paul Dirac Drive Tallahassee, Florida 32310 nationalmaglab.org 10 April 2019 Colleagues, On behalf of the National High Magnetic Field Laboratory and Florida State University, we welcome you to the 12th North American FT MS Conference! We hope that your stay in Key West is both personally and professionally rewarding. Topics span a broad range of techniques and applications. Posters will remain up throughout the meeting, to encourage discussions. The primary effort for organizing the conference has been provided by the conference coordinator, Karol Bickett. She has done an excellent job with the many required logistical and personal arrangements. Should you need any assistance or have any issues that need to be resolved while at the conference, please see Karol at the registration table so that we can insure that your experience at this conference is a most enjoyable one. Your registration fee covers only a portion of the expenses of the conference. The generous contributions of our sponsors have kept the meeting costs affordable for participants, and made it possible for us to assist with the expenses of the invited speakers and the graduate student poster presenters. Please take an opportunity to thank our participating sponsors at their display tables. Thank you for joining us, and we look forward to a splendid conference! Sincerely, Christopher Hendrickson Director, Ion Cyclotron Resonance Program, NHMFL Christopher Hendrickson, Director, ICR Program 850.644.0711 | [email protected] Operated
    [Show full text]
  • УДК 624.9 PETROLEOMICS Kazarian MV Scientific Supervisor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository УДК 624.9 PETROLEOMICS Kazarian M.V. Scientific supervisor: candidate of chemical science Orlovskaya N. F. Scientific instructor: lecturer Tsigankova Е.V. Siberian Federal University 1 What is the meaning of "petroleomics"? Prof. O. Mallinz (Schlumberger, 2007) introduced the concept of petroleomike as a new scientific direction in the study of petroleum systems, which by analogy with genomics in biology, is based on the concept of the development in each oil distribution system unique continuous series of different size and solubility of resin-asphaltene components in the hydrocarbon matrix. Petroleomics is a new field in petroleum chemistry engineering I am launching through my publication. "To understand function, study structure," said Francis Crick, Nobel Prize winner for revealing the chemical structure of DNA, a discovery that led to genomics. We envision petroleomics being to petroleum science what genomics is to medical science. In short, medicine traditionally treats patients based on symptoms, and the vision of genomics is to predict and treat medical concerns even before symptoms appear. Petroleum science has, similarly, been phenomenological. Establishing structure-function relationships has been precluded in petroleum science because nobody knew the petroleum chemical structure. This is all about to change. Petroleomics promises the ability to predict petroleum properties based on the foundation of elucidating the chemistry of all constituents in a crude oil. In addition, it is necessary to get information concerning Downhole Fluid Analysis in order to exploit petroleum chemistry to understand reservoir architecture.
    [Show full text]
  • International Journal of Mass Spectrometry a Dual Time-Of-Flight
    International Journal of Mass Spectrometry 287 (2009) 39–45 Contents lists available at ScienceDirect International Journal of Mass Spectrometry journal homepage: www.elsevier.com/locate/ijms A dual time-of-flight apparatus for an ion mobility-surface-induced dissociation-mass spectrometer for high-throughput peptide sequencing Wenjian Sun, Jody C. May, Kent J. Gillig, David H. Russell ∗ Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University, College Station, TX 77843, United States article info abstract Article history: A novel ion mobility (IM)-surface-induced dissociation (SID)-mass spectrometer consisting of two Received 25 August 2008 independent time-of-flight (TOF) mass analyzers is described. The dual TOF instrument configuration Received in revised form 28 October 2008 facilitates high-throughput post-ionization separation and mass analysis of precursor and fragment ions, Accepted 24 November 2008 and the utility of 3D data acquisition is demonstrated for top-down proteomics by performing simulta- Available online 3 December 2008 neous acquisition of peptide mass maps and amino acid sequence determination. © 2008 Elsevier B.V. All rights reserved. Keywords: Ion mobility spectrometry Mass spectrometry Surface-induced dissociation Time-of-flight MS–MS 1. Introduction molecular imaging mass spectrometry. Without the seminal con- tributions made by workers in the field of computer-enhanced Analytical chemists have long recognized the potential for analytical chemistry, these advances and emerging research
    [Show full text]
  • Meeting the Petrochemical Challenge with Separation Science and Mass Spectrometry Burlington House 14 November 2014
    Meeting the Petrochemical Challenge with Separation Science and Mass Spectrometry Burlington House 14 November 2014 GOLD Sponsors SILVER Sponsors PROGRAMME 09.00 Registration with Tea/Coffee 09.45 Welcome & Opening Remarks (John Langley, University of Southampton) Session Chair: Tom Lynch (BP, Pangbourne) 10.00 Philip Marriott (Monash University): Multidimensionality in Gas Chromatography - Revealing Molecular Information from Complex Samples 10.50 Mark Barrow (University of Warwick): Ultra-High Resolution MS 11.10 Alessando Vetere (Max Planck Institute): FAIMS-FTMS: A New Approach to Unravelling Crude Oil 11.30 Kirsten Craven (Waters Corporation): The Potential and Possibilities of Mass Spectrometry with Ion Mobility for the Analysis of Petroleum and Polymeric Materials 11.50 Laura McGregor (Markes International) - Gold Sponsor Presentation: Enhanced Crude Oil Fingerprinting by GC x GC-TOF MS with Soft Electron Ionisation 12.10 Vincent Jespers (Thermo Scientific) - Gold Sponsor Presentation: Developments in Orbitrap Technology 12.30 Lunch & Exhibition Session Chair: John Langley (University of Southampton) 13.30 Jürgen Wendt LECO - Gold Sponsor Presentation: High Resolution GC-TOF MS for Petrochemical Applications 13.50 Didier Thiebaut (ESPCI, Paris): SFC Based Applications in the Petroleum Related Industry 14.40 Sophie Moore (University of Lincoln): Fuel Compatible Marking Systems 15.00 Waraporn Ratsameepakai (University of Southampton): Fatty Acid Methyl Esters (FAMEs) Issues and Hyphenated Mass Spectrometry Solutions 15.20 Tea/Coffee
    [Show full text]
  • Efficient Denoising Algorithms for Large Experimental Datasets and Their Applications in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
    Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry Lionel Chirona, Maria A. van Agthovenb, Bruno Kieffera, Christian Rolandob, and Marc-André Delsuca,1 aInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche, U596; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104; Université de Strasbourg, 67404 Illkirch-Graffenstaden, France, and bMiniaturisation pour la Synthèse, l’Analyse et la Protéomique, Centre National de la Recherche Scientifique, Unité de Service et de Recherche 3290, and Protéomique, Modifications Post-traductionnelles et Glycobiologie, Université de Lille 1 Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France Edited by David L. Donoho, Stanford University, Stanford, CA, and approved November 27, 2013 (received for review April 9, 2013) Modern scientific research produces datasets of increasing size and seismology, astrophysics, genetics, or financial analysis. They are complexity that require dedicated numerical methods to be pro- easily analyzed by Fourier transformation if regularly sampled. cessed. In many cases, the analysis of spectroscopic data involves For such specific signals, one class of denoising methods is the denoising of raw data before any further processing. Current based on modeling a sum of a fixed number of exponentials as efficient denoising algorithms require the singular value decomposi- devised by Prony (8). This was recently revisited and improved by tion of a matrix with a size that scales up as the square of the data Beylkin and Monzon (9, 10). – length, preventing their use on very large datasets. Taking advantage There are also statistical methods related to the Karhunen Loève of recent progress on random projection and probabilistic algorithms, transform which use adaptive basis instead of a priori basis.
    [Show full text]
  • Level View of Microbial Community Responses in Benthic Ecosystems Affected by the Deepwater Horizon Oil Spill
    INTEGRATING OMICS APPROACHES TO PROVIDE A SYSTEMS- LEVEL VIEW OF MICROBIAL COMMUNITY RESPONSES IN BENTHIC ECOSYSTEMS AFFECTED BY THE DEEPWATER HORIZON OIL SPILL A Dissertation Presented to The Academic Faculty by Smruthi Karthikeyan In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Civil and Environmental Engineering Georgia Institute of Technology May 2020 COPYRIGHT © 2020 BY SMRUTHI KARTHIKEYAN INTEGRATING OMICS APPROACHES TO PROVIDE A SYSTEMS- LEVEL VIEW OF MICROBIAL COMMUNITY RESPONSES IN BENTHIC ECOSYSTEMS AFFECTED BY THE DEEPWATER HORIZON OIL SPILL Approved by: Dr. Konstantinos T. Konstantinidis, Advisor Dr. Joel E. Kostka School of Civil and Environmental School of Biological Sciences Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Spyros G. Pavlostathis Dr. Thomas DiChristina School of Civil and Environmental School of Biological Sciences Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Jim C. Spain School of Civil and Environmental Engineering Georgia Institute of Technology Date Approved: December 16, 2019 To my grandparents ACKNOWLEDGEMENTS Foremost, I would like to thank my advisor Dr. Kostas Konstantinidis for his guidance and support through the last four years as well as Dr. Jim C. Spain for motivating me to pursue a field that was an entirely new avenue for me. I’m deeply grateful for them taking a chance on me and providing me with opportunities that greatly expanded my horizon of thinking. I couldn’t have imagined coming this far in my academic career without their constant support and mentorship. I would also like to thank the collaborators of the various projects I worked on during the course of my PhD, specifically, Dr.
    [Show full text]
  • To Super-Resolution Mass Spectrometry
    168 CHIMIA 2014, 68, Nr. 3 Mass spectroMetry in switzerland doi:10.2533/chimia.2014.168 Chimia 68 (2014) 168–174 © Schweizerische Chemische Gesellschaft From High- to Super-resolution Mass Spectrometry Yury O. Tsybin* Abstract: High-resolution mass spectrometry (MS) is indispensable for the molecular-level analysis of biological and environmental samples with great intra- and inter-molecular complexity. Here, we summarize developments in Fourier transform mass spectrometry (FTMS), the flagship of high-resolution MS techniques, accomplished in our laboratory. Particularly, we describe the recent and envisioned progress in structural analysis of: i) isolated large proteins and their simple mixtures, with a focus on monoclonal antibodies, via top–down, middle–down, and extended bottom–up mass spectrometry; ii) complex protein mixtures and proteomes via extended bottom–up proteomics; and iii) crude oil fractions and similar complex molecular mixtures. Despite the unequivocal success in molecular structural analysis, the demonstrated results clearly indicate that the compromise between MS acquisition speed (throughput) and achievable resolution level inhibits further advances of MS applications in the areas related to life, environmental, and material sciences. To further advance beyond state-of-the-art FTMS capabilities in these areas, we present the technique of super-resolution mass spectrometry that has been pioneered by our laboratory. Keywords: Extended bottom–up proteomics · Filter diagonalization method (FDM) · Fourier transform mass spectrometry (FTMS) · Middle–down proteomics · Petroleomics · Resolution · Super-resolution mass spectrometry · Top–down proteomics Introduction based metabolomics and proteomics.[2] tion (200–400 ms ion detection time) and Nevertheless, the gap between the state-of- above. Significantly higher demands are Mass spectrometry (MS) is the most the-art MS performance and the analytical imposed on quantitative peptide and pro- sensitive and specific analytical tech- demands imposed by the complexity of tein analysis (e.g.
    [Show full text]