Random Walks in Negative Curvature and Boundary Representations

Total Page:16

File Type:pdf, Size:1020Kb

Random Walks in Negative Curvature and Boundary Representations RANDOM WALKS IN NEGATIVE CURVATURE AND BOUNDARY REPRESENTATIONS. KEVIN BOUCHER Abstract. In this paper we establish a version of the Margulis Roblin equidistribution theorem’s [28] [32] for harmonic measures. As a conse- quence a von Neumann type theorem is obtained for boundary actions and the irreducibility of the associated quasi-regular representations [3] is deduced. 1. Introduction Given a non-elementary discrete group, Γ, acting properly by isometries on a proper roughly geodesic hyperbolic space X,d , two main classes of measures can be constructed on the Gromov boundaryp q X of X,d : the harmonic measures and quasiconformal measures. Let usB brieflyp recallq these constructions. A measure ν on X is called Γ-quasiconformal if Γ preserves the class of ν and one can find BC 1, for all g Γ and ν-almost every ξ X: ě P PB ´1 dg ν ´1 C´1eδΓβpo,g .o;ξq ˚ ξ CeδΓβpo,g .o;ξq ď dν p qď where β denote the Buseman cocycle on X. Given a point o X in X,d , the criticalB exponent of Γ is defined as: P p q 1 δΓ lim sup ln BX o,r Γ.o arXiv:2001.03932v1 [math.DS] 12 Jan 2020 “ r r | p qX | It is strictly positive when Γ is non-elementary. The Patterson-Sullivan procedure consists to take a weak limit in Prob X p Y X when s goes to δΓ of the sequence of probabilities: B q 1 e´sdpg.o,oqδ H s g.o gPΓ p q ÿ ´sdpg.o,oq for s δΓ and H s gPΓ e . These Patterson-Sullivan measures are quasiconformal.ą p q Moreover “ these are Hausdorff measures for a visual dis- tance on X when Γ actsř cocompactly on X,d [15]. B p q 1 2 KEVIN BOUCHER One the other hand given a probability measure, µ, with 1st moment and support not contained in a elementary group. If Xn n denote the random walk on Γ starting at the identity e Γ, the sequencep q of X-valued random P variables Xn.o n converges almost surely to a random variable Z with values in X. Thep lawq of Z is by definition the harmonic measure on X for the randomB walk generated by µ. B The dynamical systems associated to these measures was extensively in- vestigated these last years. Initiated by U. Bader and R. Muchnik in [28] a particular interest grown around the quasi-regular representations associ- ated to these systems called boundary representations. These representations generalized the well known parabolic inductions L2 G P for semisimple Lie groups G and P minimal parabolic subgroups of G.p In{ theirq work the authors proved the irreducibility of boundary representations arising from Patterson- Sullivan measures and conjectured the following: Conjecture [Bader-Muchnik] Let G be a locally compact group and µ a admissible probability measure on G, the boundary representation of G on the Poisson boundary P G,µ is irreducible. p q Using the interplay between quasiconformal and harmonic measures in negative curvature [8] [14] we propose another approach of these questions that morally attempt to understand boundary dynamics in terms of spectral properties instead of geometric ones. This led us to investigate probabilistic analogues of certain geometric phenomenons. 1.1. Harmonic equidistribution and its consequences. Let µ be a sym- metric probability measure on Γ. The Markov operator Pµ associated to a continuous action α :Γ K K of Γ on a compact space K is the positive ˆ Ñ 0 contraction defined on the space of continuous functions C K , . 8 given by: p p q } } q Pµϕ ξ µ g ϕ gξ p q“ gPΓ p q p q ÿ for ϕ C0 K . A probability measure, ν, on K is µ-stationary if µ ν α µ Pν p νq. Moreover the measure µ is called ν-ergodic if ν is stationary˚ “ ˚p b q“ and every Pµ-invariant function is ν-almost everywhere constant. The principal result of this paper is the following probabilistic version of the Margulis Roblin equidistribution theorem’s [32] [28] for stationary mea- sures on the Gromov boundary of X,d : p q BOUNDARY REPRESENTATIONS 3 Theorem 1 Let ν be a probability measure on the Gromov boundary, X, of X,d . Assume µ Prob Γ is a 1st moment, non-elementary ν-ergodicB probabilityp q measure onP Γ. p q Then the following equidistribution holds: Eµ ´1 ´1 ˚n nÑ`8 ϕ Xn.ξ ψ Xn .η ϕ gξ ψ g η µ g ϕdν ψdν r p q p qs “ gPΓ p q p q p q ÝÝÝÝÑ BX BX ÿ ż ż for all ϕ, ψ C0 X continuous functions and ξ, η X. P pB q PB Let X be a Hadamard manifold with pinched curvature. This means that X is a complete simply connected Riemannian manifold of dimension greater 2 2 than 2 and curvature, KX , which satisfies: b KX a . The Brownian ´ ď ď´ motion Bt t on X, that is the diffusion process generated by the Laplace- p q Beltrami operator on X, converges almost surely to a random variable B8 with values in the geometric boundary X. When the action Γ on X has fi- nite covolume W. Ballman and F. LedrappierB in [5] refined the discretization procedure introduced by T. Lyons and D. Sullivan in [27] and earlier dis- cussed by H. Furstenberg in [19] which allows to interpret the distribution of B8, also called harmonic, has a stationary measure for a random walk performed on Γ: Theorem [Ballman, Ledrappier [5]] There exists a admissible sym- metric probability measure on Γ with 1st moment such that the harmonic measure of the random walk generated by µ and the distribution of the limit random variable B8 coincide. This result guarantees the ergodicity of the measure µ and as a direct consequence of Theorem 1 one has: Corollary Let X be a Hadamard manifold with pinched negative curvature and Γ a discrete group of isometries with finite covolume. Let ν be the unique harmonic measure on the visual boundary X of X for the Brownian motion B Bt t. Thenp q Γ carries a admissible probability measure with 1st moment, µ, such that: Eµ ´1 ´1 ˚n nÑ`8 ϕ Xn.ξ ψ Xn .η ϕ gξ ψ g η µ g ϕdν ψdν r p q p qs “ gPΓ p q p q p q ÝÝÝÝÑ BX BX ÿ ż ż for all continuous functions ϕ, ψ C0 X and ξ, η X. P pB q PB Back to a more general situation where X,d is a proper roughly geodesic hyperbolic space. Assuming the action ofp Γ onq X,d is cocompact and µ p q 4 KEVIN BOUCHER is finitely supported symmetric and admissible it was proved in [8] that the harmonic measure, ν, can be interpreted as a quasiconformal measure coming for the Green distance on Γ that satisfies hyperbolic properties. Conversely when X,d is a CAT( 1) space [11] every quasiconformal measure for Γ can be interpretedp q as a stationary´ measure for a symmetric probability measure with 1st moment on Γ [14]. This interplay motivate the investigation on quasiconformal measures that can be regarded as stationary measures. A measure ν on a compact metric space K,d is called Ahlfors-regular if there exist α 0 and C 1 such that: p q ą ě C´1rα ν B x, r Crα ď p p qq ď for 0 r Diam K . Examplesă ă of suchp measuresq in our setting are given by quasiconformal mea- sures on X associated to discrete groups which act geometrically on X,d . B p q Considering Ahlfors-regular quasiconformal measures on X for the action of Γ on X,d , Theorem 1 together with techniques inspiredB by [14] [3] led us to thep followingq von Neumann type result for measure class preserving actions: Theorem 2 Let µ Prob Γ be a admissible finitely supported symmetric probability on Γ and νP its harmonicp q measure on X. B Denote Pn, with n 0, the operator defined as: ě πo Xn πo g P Eµ p q p q µ˚n g n Ξ X Ξ g “ r o n s“ gPΓ o p q p q ÿ p q where Ξo πo1 X 1 X 2 denotes the Harish-Chandra function of the bound- “p B | B qL ary representation πo on Γ. Then for all ϕ, ψ L2 X, ν , square integrable functions on X, the follow- ing von NeumannP typerB convergences holds: B Pnϕ ψ L2 ϕdν ψdν p | q ÝÝÝÑnÑ8 żBX żBX P In other words if 1BX denote the one dimensional projector on the con- stant function 1BX given by: P1 ϕ ϕ 1 X 1 X BX p q“p | B q B for ϕ L2 X, ν . The Theorem 2 corresponds to the weak convergence of P rB s the sequence of operators Pn n to P1 . p q BX BOUNDARY REPRESENTATIONS 5 In opposite to the measure preserving situation, the vector 1BX appears to 2 be cyclic for the boundary representation Γ, πo, L X, ν and a standard argument leads to the following: p rB sq Corollary 4.1 Let µ Prob Γ be a admissible finitely supported symmet- ric probability on Γ and Pν its harmonicp q measure on X. Then the associated 2 B boundary representation Γ, πo, L X, ν is irreducible. p rB sq 1.2. Outlines. In Section 2, we remind the reader standard facts about random walk on groups as well as some part of the theory of Patterson-Sullivan on quasicon- formal measures.
Recommended publications
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Program of the Sessions Washington, District of Columbia, January 5–8, 2009
    Program of the Sessions Washington, District of Columbia, January 5–8, 2009 MAA Short Course on Data Mining and New Saturday, January 3 Trends in Teaching Statistics (Part I) 8:00 AM –4:00PM Delaware Suite A, Lobby Level, Marriott Organizer: Richard D. De Veaux, Williams College AMS Short Course on Quantum Computation 8:00AM Registration and Quantum Information (Part I) 9:00AM Math is music—statistics is literature. (5) What are the challenges of teaching 8:00 AM –5:00PM Virginia Suite A, statistics, and why is it different from Lobby Level, Marriott mathematics? Richard D. De Veaux, Williams College Organizer: Samuel J. Lomonaco, 10:30AM Break. University of Maryland Baltimore County 10:45AM What does the introductory course look (6) like in 2009? How technology has 8:00AM Registration. changed what we do in introductory 9:00AM A Rosetta Stone for quantum computing. statistics for the non-math/science (1) Samuel Lomonaco,Universityof student. Maryland Baltimore County Richard D. De Veaux, Williams College 10:15AM Break. 1:00PM What does the math-based introductory (7) course look like in 2009? How do 10:45AM Quantum algorithms. we merge mathematical concepts (2) Peter Shor, Massachusetts Institute of into the introductory course for the Technology math/science student? How does 2:00PM Concentration of measure effects in statistical programming fit in? (3) quantum information. Richard D. De Veaux, Williams College Patrick Hayden, McGill University 2:30PM Break. 3:15PM Break. 2:45PM Introduction to Modeling. Regression and 3:45PM Quantum error correction and fault (8) ANOVA. Overview: How much to teach (4) tolerance.
    [Show full text]
  • Milnor's Problem on the Growth of Groups And
    Milnor’s Problem on the Growth of Groups and its Consequences R. Grigorchuk REPORT No. 6, 2011/2012, spring ISSN 1103-467X ISRN IML-R- -6-11/12- -SE+spring MILNOR’S PROBLEM ON THE GROWTH OF GROUPS AND ITS CONSEQUENCES ROSTISLAV GRIGORCHUK Dedicated to John Milnor on the occasion of his 80th birthday. Abstract. We present a survey of results related to Milnor’s problem on group growth. We discuss the cases of polynomial growth and exponential but not uniformly exponential growth; the main part of the article is devoted to the intermediate (between polynomial and exponential) growth case. A number of related topics (growth of manifolds, amenability, asymptotic behavior of random walks) are considered, and a number of open problems are suggested. 1. Introduction The notion of the growth of a finitely generated group was introduced by A.S. Schwarz (also spelled Schvarts and Svarc))ˇ [218] and independently by Milnor [171, 170]. Particu- lar studies of group growth and their use in various situations have appeared in the works of Krause [149], Adelson-Velskii and Shreider [1], Dixmier [67], Dye [68, 69], Arnold and Krylov [7], Kirillov [142], Avez [8], Guivarc’h [127, 128, 129], Hartley, Margulis, Tempelman and other researchers. The note of Schwarz did not attract a lot of attention in the mathe- matical community, and was essentially unknown to mathematicians both in the USSR and the West (the same happened with papers of Adelson-Velskii, Dixmier and of some other mathematicians). By contrast, the note of Milnor [170], and especially the problem raised by him in [171], initiated a lot of activity and opened new directions in group theory and areas of its applications.
    [Show full text]
  • Mathematical Olympiad Other Scholarship, Research Programmes
    MATHEMATICAL OLYMPIAD & OTHER SCHOLARSHIP, RESEARCH PROGRAMMES 2011-2012 DEPARTMENT OF MATHEMATICS COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY COCHIN - 682 022 The erstwhile University of Cochin founded in 1971 was reorganised and converted into a full fledged University of Science and Technology in 1986 for the promotion of Graduate and Post Graduate studies and advanced research in Applied Sciences, Technology, Commerce, Management and Social Sciences. The combined Department of Mathematics and Statistics came into existence in 1976, which was bifurcated to form the Department of Mathematics in 1996. Apart from offering M.Sc, and M. Phil. degree courses in Mathematics it has active research programmes in Operations Research, Stochastic Control Theory, Graph Theory, Wavelet Analysis and Operator Theory. The Department has been coordinating the Mathematical olympiad - a talent search programme for high school students since 1990. It also organizes Mathematics Enrichment Programmes for students and teachers to promote the cause of Mathematics and attract young minds to choose a career in Mathematics. The Department also organized the International Conference on Recent Trends in Graph Theory and Combinatorics as a Satellite Conference of the International Congress of Mathematicians (ICM) during August 2010. “Tejasvinavadhithamastu” May learning illumine us both, The teacher and the taught. -1- PREFACE This brochure contains information on various talent search and research programmes in basic sciences in general and mathematics in particular and is meant for the students of Xth standard and above. It will give an exposure to the very many avenues available to those who enjoy the beauty of science and have the real potential to be an academic and a researcher.
    [Show full text]
  • New Perspectives on the Interplay Between Discrete Groups in Low-Dimensional Topology and Arithmetic Lattices
    Mathematisches Forschungsinstitut Oberwolfach Report No. 30/2015 DOI: 10.4171/OWR/2015/30 New Perspectives on the Interplay between Discrete Groups in Low-Dimensional Topology and Arithmetic Lattices Organised by Ursula Hamenst¨adt, Bonn Gregor Masbaum, Paris Alan Reid, Austin Tyakal Nanjundiah Venkataramana, Mumbai 21 June – 27 June 2015 Abstract. This workshop brought together specialists in areas ranging from arithmetic groups to topological quantum field theory, with common interest in arithmetic aspects of discrete groups arising from topology. The meeting showed significant progress in the field and enhanced the many connections between its subbranches. Mathematics Subject Classification (2010): 11-XX, 20-XX, 22-XX, 53-XX. Introduction by the Organisers The workshop New Perspectives on the Interplay between Discrete Groups in Low- Dimensional Topology and Arithmetic Lattices was held June 22 – June 26, 2015. The participants were specialists in areas ranging from arithmetic groups to to- pological quantum field theory, with common interest in arithmetic aspects of discrete groups arising from topology. The mornings of the first two days of the meeting were devoted to longer lectures by senior participants aimed at surveying the new developments in their respective areas of research. These lectures were given by Alexander Lubotzky (on arithmetic representations of mapping class groups), Julien March´e(on topological quantum field theory), Eduard Looijenga (on algebraic-geometric aspects of mapping class groups) and Joachim Schwermer (on automorphic structures). All the remaining talks were reports on recent progress on one of the themes of the meeting. The meeting showed significant progress in the field and enhanced the many connections between its subbranches.
    [Show full text]
  • 1. Annotation
    Course Syllabus Course Title (in English) Modern Dynamical Systems Course Title (in Russian) Современные динамические системы Lead Instructor(s) Alexandra Skripchenko Contact Person Alexandra Skripchenko Contact Person's E-mail [email protected] 1. Annotation Course Description Dynamical systems in our course will be presented mainly not as an independent branch of mathematics but as a very powerful tool that can be applied in geometry, topology, probability, analysis, number theory and physics. We consciously decided to sacrifice some classical chapters of ergodic theory and to introduce the most important dynamical notions and ideas in the geometric and topological context already intuitively familiar to our audience. As a compensation, we will show applications of dynamics to important problems in other mathematical disciplines. We hope to arrive at the end of the course to the most recent advances in dynamics and geometry and to present (at least informally) some of results of A. Avila, A. Eskin, M. Kontsevich, M. Mirzakhani, G. Margulis. In accordance with this strategy, the course comprises several blocks closely related to each other. The first three of them (including very short introduction) are mainly mandatory. The decision, which of the topics listed below these three blocks would depend on the background and interests of the audience. Course Prerequisites / We expect our audience to be familiar with basic differential geometry, Recommendations basic topology and basic measure theory. Аннотация Курс о современных динамических системах - это обзор результатов, полученных в нескольких направлениях за последние тридцать лет, причем основной упор делается на задачах, которые пришли из соседних разделов математики - маломерной топологии, теории чисел, геометрии - и оказались решены с помощью методов теории динамических систем или, наоборот, возникли исторически в динамике, но потребовали для своего решения привлечения инструментов из других областей - комбинаторики, теории вероятностей и других.
    [Show full text]
  • Hahn-Banach for Metric Functionals and Horofunctions
    Journal of Functional Analysis 281 (2021) 109030 Contents lists available at ScienceDirect Journal of Functional Analysis www.elsevier.com/locate/jfa Hahn-Banach for metric functionals and horofunctions Anders Karlsson a,b,∗,1 a Section de mathématiques, Université de Genève, 2-4 Rue du Lièvre, Case Postale 64, 1211 Genève 4, Switzerland b Matematiska institutionen, Uppsala universitet, Box 256, 751 05 Uppsala, Sweden a r t i c l e i n f o a b s t r a c t Article history: It is observed that a natural analog of the Hahn-Banach Received 7 February 2020 theorem is valid for metric functionals but fails for horofunc- Accepted 30 March 2021 tions. Several statements of the existence of invariant metric Available online 7 April 2021 functionals for individual isometries and 1-Lipschitz maps Communicated by K.-T. Sturm are proved. Various other definitions, examples and facts are Keywords: pointed out related to this topic. In particular it is shown that Metric geometry the metric (horofunction) boundary of every infinite Cayley Compactifications graphs contains at least two points. Fixed-point theory © 2021 The Author(s). Published by Elsevier Inc. This is an Hahn-Banach theorem open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1. Introduction It is well-recognized that the Hahn-Banach theorem concerning extensions of contin- uous linear functionals is a cornerstone of functional analysis. Its origins can be traced to so-called moment problems, and in addition to H. Hahn and Banach, Helly’s name should be mentioned in this context ([12,40]).
    [Show full text]
  • Arxiv:1111.0512V4 [Math.GR] 13 May 2013
    MILNOR'S PROBLEM ON THE GROWTH OF GROUPS AND ITS CONSEQUENCES ROSTISLAV GRIGORCHUK Dedicated to John Milnor on the occasion of his 80th birthday. Abstract. We present a survey of results related to Milnor's problem on group growth. We discuss the cases of polynomial growth and exponential but not uniformly exponential growth; the main part of the article is devoted to the intermediate (between polynomial and exponential) growth case. A number of related topics (growth of manifolds, amenability, asymptotic behavior of random walks) are considered, and a number of open problems are suggested. 1. Introduction The notion of the growth of a finitely generated group was introduced by A.S. Schwarz (also spelled Schvarts and Svarc))ˇ [S55ˇ ] and independently by Milnor [Mil68b, Mil68a]. Particular studies of group growth and their use in various situations have appeared in the works of Krause [Kra53], Adelson-Velskii and Shreider [AVS57ˇ ], Dixmier [Dix60], Dye [Dye59, Dye63], Arnold and Krylov [AK63], Kirillov [Kir67], Avez [Ave70], Guivarc'h [Gui70, Gui71, Gui73], Hartley, Margulis, Tempelman and other researchers. The note of Schwarz did not attract a lot of attention in the mathematical community, and was essentially unknown to mathematicians both in the USSR and the West (the same happened with papers of Adelson-Velskii, Dixmier and of some other mathematicians). By contrast, the note of Milnor [Mil68a], and especially the problem raised by him in [Mil68b], initiated a lot of activity and opened new directions in group theory and areas of its applications. The motivation for Schwarz and Milnor's studies on the growth of groups were of geometric character.
    [Show full text]
  • Mathematical Olympiad & Other Scholarship, Research Programmes
    DEPARTMENT OF MATHEMATICS COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY COCHIN - 682 022 The erstwhile University of Cochin founded in 1971 was reorganised and converted into a full fledged University of Science and Technology in 1986 for the promotion of Graduate and Post Graduate studies and advanced research in Applied Sciences, Technology, Commerce, Management and Social Sciences. The combined Department of Mathematics and Statistics came into existence in 1976, which was bifurcated to form the Department of Mathematics in 1996. Apart from offering M.Sc, and M. Phil. degree courses in Mathematics it has active research programmes in, Algebra, Operations Research, Stochastic Processes, Graph Theory, Wavelet Analysis and Operator Theory. The Department has been coordinating the Mathematical olympiad - a talent search programme for high school students since 1990. It also organizes Mathematics Enrichment Programmes for students and teachers to promote the cause of Mathematics and attract young minds to choose a career in Mathematics. It also co-ordinates the national level tests of NBHM for M.Sc and Ph.D scholarship. The department also organized the ‘International Conference on Recent Trends in Graph Theory and Combinatorics’ as a satellite conference of the International Congress of Mathematicians (ICM) during August 2010. “Tejasvinavadhithamastu” May learning illumine us both, The teacher and the taught. In the ‘SILVER JUBILEE YEAR’ of the RMO Co-ordination, we plan a reunion of the ‘INMO Awardees’ during 1991-2014. Please contact the Regional Co-ordinator ([email protected].) -1- PREFACE This brochure contains information on various talent search and research programmes in basic sciences in general and mathematics in particular and is meant for the students of Xth standard and above.
    [Show full text]
  • Advances in Analysis: the Legacy of Elias M. Stein (Princeton Mathematical Series) by Alexandru D
    Advances In Analysis: The Legacy Of Elias M. Stein (Princeton Mathematical Series) By Alexandru D. Ionescu;D.H. Phong Advances In Analysis: The Legacy Of Elias M. Stein (Princeton Mathematical Series).PDF - Are you searching for Advances In Analysis: The Legacy Of Elias M. Stein (Princeton Mathematical Series) Books? Now, you will be happy that at this time by Alexandru D. Ionescu;D.H. Phong Advances In Analysis: The Legacy Of Elias M. Stein (Princeton Mathematical Series) PDF is available at our online library. With our complete resources, you could find Advances In Analysis: The Legacy Of Elias M. Stein (Princeton Mathematical Series) By Alexandru D. Ionescu;D.H. Phong PDF or just found any kind of Books for your readings everyday. You could find and download any books you like and save it into your disk without any problem at all. There is a lot of books, user manual, or guidebook that related to Advances In Analysis: The Legacy Of Elias M. Stein (Princeton Mathematical Series) By Alexandru D. Ionescu;D.H. Phong PDF, such as : Math library news: books & ebooks - typepad Books & Ebooks Wednesday, 28 May Advances in analysis : the legacy of Elias M. Stein / edited by Charles Fefferman, and Stephen Wainger Princeton mathematical [PDF] Waverley.pdf Www.amazon.de Suche Fremdsprachige B cher [PDF] The Expositor's New Testament, Counselor's Edition.pdf Advances in analysis : the legacy of elias m. Advances in analysis : the legacy of Elias M. Stein. Alexandru Dan Ionescu; Duong H Phong; # Princeton mathematical series ; [PDF] Thai Hookers 101 - What You MUST Know About SEX And Prostitutes Before Coming To Thailand.pdf Search results for analysis - history of The Bergman prize is awarded to Elias M Stein in time series analysis and A second course in mathematical analysis is described by T M Apostol [PDF] Governmental Accounting, Auditing, And Financial Reporting 2001.pdf Cinii books - ionescu, alexandru dan Ionescu, Alexandru.
    [Show full text]
  • Mathematical Olympiad & Other Scholarship, Research Programmes
    MATHEMATICAL OLYMPIAD & OTHER SCHOLARSHIP, RESEARCH PROGRAMMES 2011-2012 >ƒ {…⁄h…«®…n˘: {…⁄h…« ®…n˘®… {…⁄h……«i…¬ {…⁄h…«®…÷n˘S™…i…‰ {…⁄h…«∫™… {…⁄h…«®……n˘…™… {…⁄h…«®…‰¥……¥… ∂…π™…i…‰ * >ƒ ∂……Œxi…: ∂……Œxi…: ∂……Œxi…: * (<«∂……¥……∫™……‰{… x…π…n˘) Like the crest of a peacock and the head-jewel of the cobra, so does Mathematics stand at the top of the Vedic Sciences. -Vedanga Jyotisha of Lagadha (ca 1400 BC) Don’t take a course of action that is dangerous and don’t make the same mistake twice. Don’t be too sure of yourself even when the way looks easy. Always watch where you are going. Whatever you do be careful.. -Holy Bible 32:20 (SIRACH) DEPARTMENT OF MATHEMATICS COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY COCHIN - 682 022 The erstwhile University of Cochin founded in 1971 was reorganised and converted into a full fledged University of Science and Technology in 1986 for the promotion of Graduate and Post Graduate studies and advanced research in Applied Sciences, Technology, Commerce, Management and Social Sciences. The combined Department of Mathematics and Statistics came into existence in 1976, which was bifurcated to form the Department of Mathematics in 1996. Apart from offering M.Sc, and M. Phil. degree courses in Mathematics it has active research programmes in Operations Research, Stochastic Control Theory, Graph Theory, Wavelet Analysis and Operator Theory. The Department has been coordinating the Mathematical olympiad - a talent search programme for high school students since 1990. It also organizes Mathematics Enrichment Programmes for students and teachers to promote the cause of Mathematics and attract young minds to choose a career in Mathematics.
    [Show full text]
  • Group Actions on 1-Manifolds: a List of Very Concrete Open Questions
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 3 (2053–2080) GROUP ACTIONS ON 1-MANIFOLDS: A LIST OF VERY CONCRETE OPEN QUESTIONS A N Abstract Over the last four decades, group actions on manifolds have deserved much at- tention by people coming from different fields, as for instance group theory, low- dimensional topology, foliation theory, functional analysis, and dynamical systems. This text focuses on actions on 1-manifolds. We present a (non exhaustive) list of very concrete open questions in the field, each of which is discussed in some detail and complemented with a large list of references, so that a clear panorama on the subject arises from the lecture. From the very beginning, groups were recognized as mathematical objects endowed with a certain “dynamics”. For instance, Cayley realized every group as a group of per- mutations via left translations: G P (G); g Lg : G G; Lg (h) = gh: ! 7! ! For a finitely-generated group G, this action has a geometric realization: We can consider the so-called Cayley graph of G whose vertices are the elements of G, two of which f; g 1 are relied by an edge whenever g f is a generator (or the inverse of a generator). Then G becomes a subgroup of the group of automorphisms of this graph. In general, the group of such automorphisms is larger than the group G. A classical result of Coxeter, Frucht, and Powers [1981] consists on a slight modification of this con- struction so that the automorphisms group of the resulting graph actually coincides with G.
    [Show full text]