ROLE of ASSOCIATION with CALLIACTIS PARASITICA COUCH in SOCIAL BEHAVIOUR of DARD ANUS ARROSOR (HERBST) J Balasch, J Cuadras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum -
A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project .............................................................................................. -
Cirripedia: Thoracica: Koleolepadidae), with New Records from Australian Waters Andrew M
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 29 001–009 (2014) Review of the stalked barnacle genus Koleolepas (Cirripedia: Thoracica: Koleolepadidae), with new records from Australian waters Andrew M. Hosie Aquatic Zoology, Western Australian Museum, 49 Kew St, Welshpool DC, WA 6986; School of Biomedical Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia. Email: [email protected] ABSTRACT – The stalked barnacle family Koleolepadidae is found exclusively in association with hermit crabs (Dardanus spp.) carrying sea anemones (Calliactis spp.). New records of Koleolepas avis and K. willeyi are herein reported, respectively, from near Ningaloo, Western Australia, and Christmas Island, an Australian territory in the Indian Ocean. Previously these species were known only from the East China Sea and southern Japan (K. avis), and the Loyalty Islands (K. willeyi). Both species are redescribed and fi gured. Type material of K. tinkeri and K. willeyi were examined and K. tinkeri is considered a junior subjective synonym of K. willeyi. KEYWORDS: Crustacea, Diogenidae, Hormathiidae, epibiotic, symbiosis, parasitism, Ningaloo Marine Park, Christmas Island, Western Australia INTRODUCTION Koleolepas avis has been recorded since its original Members of the little known stalked barnacle description (e.g. Liu and Ren 1985, 2007; Yusa and family Koleolepadidae Hiro, 1933 are notable for Yamato 1999; Yusa et al. 2001). Recent material from being the third wheel in the well known symbiotic Australian waters in the Indian Ocean has prompted a relationship between hermit crabs and sea anemones. reassessment of these species. These barnacles attach to the gastropod shell inhabited by the hermit crab, typically underneath METHODS the sea anemone’s pedal disc. -
Stylohates: a Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae)1
Pacific Science (1980), vol. 34, no. 4 © 1981 by The University Press of Hawaii. All rights reserved Stylohates: A Shell-Forming Sea Anemone (Coelenterata, Anthozoa, Actiniidae) 1 DAPHNE FAUTIN DUNN,2 DENNIS M. DEVANEY,3 and BARRY ROTH 4 ABSTRACT: Anatomy and cnidae distinguish two species of deep-sea ac tinians that produce coiled, chitinous shells inhabited by hermit crabs of the genus Parapagurus. The actinian type species, Stylobates aeneus, first assigned to the Mollusca, occurs around Hawaii and Guam with P. dofleini. Stylobates cancrisocia, originally described as Isadamsia cancrisocia, occurs off east Africa with P. trispinosus. MANY MEMBERS OF THE ORDER Actiniaria pedal disk secretes a chitinous cuticle over attach obligately or facultatively to gas the small mollusk shell which the pagurid tropod shells inhabited by hermit crabs. had initially occupied and to which the small Some of these partnerships seem to be actinian had first attached, often extending strictly phoretic, the normally sedentary sea the cuticular material beyond the lip of the anemone being transported by the motile shell (Balss 1924, Faurot 1910, Gosse 1858). hermit crab (Ross 1971, 1974b). The re This arrangement affords the crab mainly lationships between other species pairs are mechanical protection (Ross 1971). mutualistic, the anemone gaining motility Carlgren (I928a) described as a new genus while protecting its associate from predation and species Isadamsia cancrisocia (family (Balasch and Mengual 1974; Hand 1975; Actiniidae), an actinian attached to a shell McLean and Mariscal 1973; Ross 1971, occupied by a hermit crab, from four speci 1974b; Ross and von Boletsky 1979). As the mens collected by the Deutschen Tiefsee crustacean grows, it must move to increas Expedition (1898-1899) at 818 m in the ingly larger shells. -
Nerve Net Pacemakers and Phases of Behaviour in the Sea Anemone Calliactis Parasitica
J. exp. Biol. 104, 231-246 (1983) 231 Erinted in Great Britain © The Company of Biologists Limited 1983 NERVE NET PACEMAKERS AND PHASES OF BEHAVIOUR IN THE SEA ANEMONE CALLIACTIS PARASITICA BY IAN D. McFARLANE Department of Zoology, University of Hull, Hull HU6 7RX (Received 9 November 1982 —Accepted 31 January 1983) SUMMARY Bursts of through-conducting nerve net (TCNN) pulses, 20—45 min apart, were recorded from Calliactis attached to shells. Within 15—25 min of the anemones being detached the TCNN bursts suddenly became more frequent (only 4—11 min apart). Such bursts continued for several hours if re-attachment was prevented. In an attached anemone simultaneous electrical stimulation of the TCNN and ectodermal slow system (SSI) with 20-30 shocks at one every 5 s also led to more frequent TCNN bursts, whether or not detachment took place. If, however, the anemone remained attached, the intervals between bursts returned to the normal resting dura- tion after about 90 min. In all cases the decay of the 4—11 min interval TCNN bursts involved a reduction in pulse number, not an increase in burst interval. Partial activation of the TCNN pacemakers followed stimulation of the SSI alone. It is suggested that in sea anemones the change from one behavioural phase to another is associated with a change in the patterned output of nerve net pacemakers. INTRODUCTION The most obvious behavioural response of a sea anemone is that it contracts when touched. These fast contractions are triggered by a through-conducting nerve net (TCNN), (e.g. Pantin, 1935a; Josephson, 1966; Pickens, 1969). -
Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included. -
Diplomarbeit
DIPLOMARBEIT Titel der Diplomarbeit Hermit crabs and their symbionts: reactions to artificially induced anoxia on a sublittoral sediment bottom Verfasserin Katrin Pretterebner angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 444 Studienrichtung lt. Studienblatt: Diplomstudium Ökologie Betreuer: Doz. Dr. Michael Stachowitsch “Every human heartbeat is a universe of possibilities.” Gregory David Roberts Photo: Shannon Rosenberg The diploma thesis was conducted in the framework of the FWF-projects: “Oxygen crises in the North Adriatic: effect on the structure and behaviour of the macroepibenthos” (P17655-B03) “Low dissolved oxygen events in the Northern Adriatic: in situ experimental insight into benthic responses before, during and post-anoxia” (P21542-B17) Table of contents 1. Introduction ......................................................................................................... 1 2. Materials and methods ....................................................................................... 4 2.1. Study site ...................................................................................................... 4 2.2. Experimental design and sampling ............................................................... 5 2.3. Data analysis ................................................................................................ 7 2.4. Statistical analysis ........................................................................................ 9 3. -
A Review of Toxins from Cnidaria
marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1. -
Anemone Calliactis Parasitica
J. Exp. Biol. (1973). 58, 77-9O 77 With 8 text-figures printed in Great Britain SPONTANEOUS ELECTRICAL ACTIVITY IN THE SEA ANEMONE CALLIACTIS PARASITICA BY I. D. McFARLANE Gatty Marine Laboratory, University of St Andrews, Scotland {Received 16 June 1972) INTRODUCTION Behavioural activities of sea anemones can be divided into three types (Ross, 1964): (1) Slow movements. Various muscles, in particular the endodermal circulars and parietals, give slow spontaneous contractions in both intact animals and isolated pre- parations. Most information about these activities comes from studies of Metridium senile (Batham & Pantin, 1950 a, b, c, 1954) and Calliactis parasitica (Needier & Ross, 1958; Ewer, i960). (2) Reflexes. These may be either local or symmetrical (Pantin, 1935a). Light mechanical stimulation of a tentacle of C. parasitica will cause local withdrawal whereas strong stimulation of the column produces a rapid symmetrical contraction, mainly of the sphincter and retractor muscles. (3) Complex activity. Complete behavioural sequences that may involve com- ponents from the other two categories and are normally elicited by external stimuli. For example, the normal rhythm of alternating circular and longitudinal contractions of M. senile changes in the presence of dissolved food substances such that circular activity predominates, leading to an extension of the column (Batham & Pantin, 1950c; Pantin, 1950). This is not the simple consequence of a stimulus acting upon a passive animal but represents a change in pattern of activity in an organism that is not at rest, and this activity seems inherent and not initiated by external stimuli (Pantin, 1950). A well-studied complex response is shell-climbing in C. -
Marine Resource Monitoring Operations Manual
MARINE RESOURCE MONITORING OPERATIONS MANUAL Updated by: Fernando Martinez-Andrade, Program Leader 15 October 2015 TEXAS PARKS AND WILDLIFE DEPARTMENT Coastal Fisheries Division October 2015 i TABLE OF CONTENTS Page List of Tables ................................................................................................................ iii List of Figures .............................................................................................................. iv Introduction ....................................................................................................................1 Sample Design ......................................................................................................2 Sample Areas ........................................................................................................2 Sample Grids ..........................................................................................................3 Sample Gridlets ......................................................................................................4 Sampling Gear .......................................................................................................4 Number of Samples................................................................................................4 Data Sheets.............................................................................................................4 Duties of Field Staff ..............................................................................................9 -
Hermit Crabs - Paguridae and Diogenidae
Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus -
The Effect of Anemone Size and Hermit Crab Behavior on the Distribution of Calliactis Tricolor (Le Sueur) on Snail Shells
Symbiosis, 10 (1991) 123-134 123 Balaban, Philadelphia/Rehovot The Effect of Anemone Size and Hermit Crab Behavior on the Distribution of Calliactis tricolor (Le Sueur) on Snail Shells WILLIAM R. BROOKS Florida Atlantic University, Department of Biological Sciences Boca Raton, FL, USA Tel. (407) 3673320, FAX (407) 3672749 Received March 16, 1990; Accepted September 2, 1990 Abstract The purpose of this study was to analyze the distribution of symbiotic sea anemones by size on snail shells of hermit crabs and to determine whether these patterns are the result of anemone or crab behavior. The distribution in the field of the anemone Calliactis tricolor on the shells of the hermit crab Dardanus venosus was recorded. Tests were also done in which crabs were given simultane• ous access to a large and small anemone. The crab's transfer behavior and posi• tions of transferred anemones on the shell were recorded. Analysis of field data showed little correlation between crab/shell size and the number of anemones, but anemones were nonrandomly distributed on the shells. Additionally, large anemones were found more commonly on top of the shell, while small anemones usually bordered the shell aperture. Choice tests showed crabs had preference for large anemones. Small anemones were frequently eaten. There was also a significant difference in the transfer behavior of the crabs with the two size classes of anemones. The chelipeds and pereiopods were rarely turned beyond 45° of vertical when transferring small anemones, but were frequently parallel to the substratum when transferring large anemones. These postural changes resulted in large and small anemones being placed in similar patterns to field distributions.