Su(3) Symmetry Breaking Chiral Quark Model and the Spin Structure of the Nucleon
IC/IR/96/25 INTERNAL REPORT XA9743267 (Limited Distribution) United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SU(3) SYMMETRY BREAKING CHIRAL QUARK MODEL AND THE SPIN STRUCTURE OF THE NUCLEON X. Song1 International Centre for Theoretical Physics, Trieste, Italy. ABSTRACT The chiral quark model, suggested by Eichten, Hinchliffe and Quigg, and extended by Cheng and Li, can explain many unexpected proton flavor and spin structures rea sonably well. The SU(3) values of /3//8 and A3/A8 given in Cheng and Li’s description are, however, inconsistent with the experimental data. Taking SU(3)-symmetry-breaking effect into account and extending the SU(3) calculation, we found that not only the above inconsistency can be removed but also better agreement obtained between many other theoretical predictions and experimental results. A consequence of this breaking is that the strange sea would be slightly negatively polarized, As —(0.05 — 0.06), and the total quark spin would contribute about one half of the proton spin, All = 0.45 — 0.47. MIRAMARE - TRIESTE August 1996 ‘Permanent address: Department of Physics, Hangzhou University, Hangzhou 310028, People’s Republic of China. I. INTRODUCTION One of the important goals in high energy physics is to reveal the internal structure of the nucleon. This includes to study the flavor and spin contents of the quark and gluon constituents in the nucleon and how these contents are related to the nucleon properties: spin, magnetic moment, elastic form factors and deep inelastic structure functions. In the late 1980’s, the polarized deep inelastic lepton nucleon scattering experiments [1] surpris ingly indicated that only a small portion of the proton spin is carried by the quark and antiquarks, and a significant negative strange quark polarization in the proton sea.
[Show full text]