Biomarker Review and Development Strategy.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Da UNIVERSIDADE DA BEIRA INTERIOR
da UNIVERSIDADE DA BEIRA INTERIOR ANALYSIS OF ORGANOPHOSPHOROUS PESTICIDES IN POSTMORTEM BIOLOGICAL FLUIDS RAQUEL HELENA CARVALHO SILVA RAPOSO Covilhã, 2009 I UNIVERSIDADE DA BEIRA INTERIOR ANALYSIS OF ORGANOPHOSPHOROUS PESTICIDES IN POSTMORTEM BIOLOGICAL FLUIDS Dissertação apresentada à Universidade da Beira Interior para a obtenção do Grau de Mestre em Bioquímica RAQUEL HELENA CARVALHO SILVA RAPOSO Covilhã, 2009 II Trabalho elaborado sob a supervisão e orientação científica do Mestre Mário João Dias, Director do Serviço de Toxicolgia Forense da Delegação Sul do Instituto Nacional de Medicina Legal e da Prof. Doutora María Eugenia Gallardo Alba, Faculdade de Ciências da Saúde da Universidade da Beira Interior III TABLE OF CONTENTS List of Figures ........................................................................................................................................... VI List of Tables .......................................................................................................................................... VIII Abbreviations ............................................................................................................................................ X Abstract................................................................................................................................................... - 1 - Resumo ................................................................................................................................................... - 3 - Justification and Objectives -
INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA in a CHLORPYRIFOS RISK ASSESSMENT Julie E
Dose-Response: An International Journal Volume 11 | Issue 2 Article 8 6-2013 INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA IN A CHLORPYRIFOS RISK ASSESSMENT Julie E. Goodman Gradient, Cambridge, MA Robyn L. Prueitt Gradient, Cambridge, MA Lorenz R. Rhomberg Gradient, Cambridge, MA Follow this and additional works at: https://scholarworks.umass.edu/dose_response Recommended Citation Goodman, Julie E.; Prueitt, Robyn L.; and Rhomberg, Lorenz R. (2013) "INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA IN A CHLORPYRIFOS RISK ASSESSMENT," Dose-Response: An International Journal: Vol. 11 : Iss. 2 , Article 8. Available at: https://scholarworks.umass.edu/dose_response/vol11/iss2/8 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Goodman et al.: Low-Dose Epidemiology Data in a Chlorpyrifos Risk Assessment Dose-Response, 11:207–219, 2013 Formerly Nonlinearity in Biology, Toxicology, and Medicine Copyright © 2013 University of Massachusetts ISSN: 1559-3258 DOI: 10.2203/dose-response.12-022.Goodman INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA IN A CHLORPYRIFOS RISK ASSESSMENT Julie E. Goodman, Robyn L. Prueitt, and Lorenz R. Rhomberg ᮀ Gradient, Cambridge, MA ᮀ USEPA assessed whether epidemiology data suggest that fetal or early-life chlorpyrifos exposure causes neurodevelopmental effects and, if so, whether they occur at exposures below those causing the current most sensitive endpoint, 10% inhibition of blood acetyl- cholinesterase (AChE). We previously conducted a hypothesis-based weight-of-evidence analysis and found that a proposed causal association between chlorpyrifos exposure and neurodevelopmental effects in the absence of AChE inhibition does not have a substantial basis in existing animal or in vitro studies, and there is no plausible basis for invoking such effects in humans at their far lower exposure levels. -
Mother/Child Organophosphate and Pyrethroid Distributions T ⁎ Natalia Bravoa, Joan O
Environment International 134 (2020) 105264 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Mother/child organophosphate and pyrethroid distributions T ⁎ Natalia Bravoa, Joan O. Grimalta, , Darja Mazejb, Janja Snoj Tratnikb,c, Dimosthenis Andreas Sarigiannisd, Milena Horvatb,c a Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona, 18, 08034 Barcelona, Catalonia, Spain b Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia c International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia d Environmental Engineering Laboratory, Department of Chemical Engineering and HERACLES Research Centre on the Exposome and Health, Centre for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki University Campus, Bldg. D, Rm 201, 54124 Thessaloniki, Greece ARTICLE INFO ABSTRACT Handling Editor: Adrian Covaci The present study reports one of the few cases in which organophosphate (OP) and pyrethroid (PYR) pesticide Keywords: human exposure is evaluated in family contexts by the analysis of mother/child pair samples. Urinary con- Organophosphorus pesticides centrations of 6 organic metabolites of organophosphates and 2 pyrethroids were measured in mothers and their Pyrethroids 7-to 8-year-old children (n = 168) in a general population from the central area of Slovenia. The results were Human Biomonitoring adjusted for specific gravity and creatinine. Children The most abundant OP metabolite in children was 4-nitrophenol (PNP) (median 0.7 ng/ml) and in mothers Women (0.45 ng/ml), representing parathion exposure. 3-Phenoxibenzoic acid (3-PBA) (0.26 ng/ml), the general me- Child-mother pairs tabolite of pyrethroids, and 3,5,6-trichloro-2-pyridinol (TCPY) (0.16 ng/ml; chlorpyriphos) were the second most abundant compounds in children and mothers, respectively. -
Estimation of Daily Intake and Risk Assessment of Organophosphorus Pesticides Based on Biomonitoring Data
Food and Chemical Toxicology 123 (2019) 57–71 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Review Estimation of daily intake and risk assessment of organophosphorus T pesticides based on biomonitoring data – The internal exposure approach Ioanna Katsikantamia,b, Claudio Colosioc, Athanasios Alegakisb, Manolis N. Tzatzarakisb, ∗ Elena Vakonakib, Apostolos K. Rizosa, Dimosthenis A. Sarigiannisd,e,f, Aristides M. Tsatsakisb, a Department of Chemistry, University of Crete, Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece b Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece c Department of Occupational and Environmental Health of the University of Milan, International Centre for Rural Health of the University Hospital San Paolo, S. Paolo Hospital Unit, Via San Vigilio 43, 20142 Milan, Italy d Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece e HERACLES Research Centre on the Exposome and Health, Centre for Interdisciplinary Research and Innovation (KEDEK), Aristotle University of Thessaloniki, Greece f Environmental Health Engineering, Institute for Advanced Study IUSS, Pavia, Italy ARTICLE INFO ABSTRACT Keywords: Human exposure to pesticides can be estimated through different approaches. The approach adopted in this Biomonitoring study is based on internal dose measures. Studies published during 2001 and 2017 were collected from PubMed Dialkyl phosphates and Scopus databases, filtered and organized. The intake of parent compounds is estimated based on theurinary Estimated daily intake excretion of different OP metabolites applying a mathematical model previously used for similar purposes. Once Health effects defined an Estimated Daily Intake (EDI), risk assessment is performed through comparison with specific Organophosphorus pesticides guideline values and hazard index (HI) is calculated to assess cumulative health risk. -
Winter 2007–2008
Pesticides and You News from Beyond Pesticides: Protecting Health and the Environment with Science, Policy and Action Volume 27, Number 4 Winter 2007-2008 Facing Scientifi c Realities, Debunking the “Dose Makes the Poison” Myth How Safe is Your Bait? Pesticides May Be Labeled as “Nonvolatile,” But Still Release Poisons into the Air Grounding out Grubs: Managing grubs with prevention and least-toxic strategies The Secret History of the War on Cancer Letter from Washington Danger at (Really) Low Dose Mo�vates changes that reject the use of toxic chemicals arm resul�ng from really low dose exposure to toxic chemicals can be measured in the air, with the excep�on of boric acid, which is now accepted in scien�fic circles. However, the pes�cide is commonly found in bait formula�ons. With the science on low Hregulatory process s�ll does not reflect the science, nor does level exposure and poten�al adverse impact, we know why there it comply with a 1996 statutory requirement that the agency have ought to be concern, especially when the chemical is placed for long in place by now a protocol for evalua�ng pes�cides that may be periods in and around the perimeter of a room in a sealed indoor endocrine disruptors, known to wreak havoc at miniscule doses in environment. Our ar�cle sheds some important light on this topic. developing organ systems. More data emerges year by year. When we do not have all the answers Lab experiments link exposure to brain effects This discussion adds important weight to the already heavy support In this issue of PAY, we print a talk given by Warren Porter, Ph.D., for the precau�onary approach to pest management. -
Impact of Urine Preservation Methods and Duration of Storage on Measured Levels of Environmental Contaminants
Journal of Exposure Science and Environmental Epidemiology (2006) 16, 39–48 r 2006 Nature Publishing Group All rights reserved 1559-0631/06/$30.00 www.nature.com/jes Impact of urine preservation methods and duration of storage on measured levels of environmental contaminants JANE A. HOPPIN,a ROSS ULMER,b ANTONIA M. CALAFAT,c DANA B. BARR,c SUSAN V. BAKER,d HELLE M. MELTZERe AND KJERSTI S. RØNNINGENe aEpidemiology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA bWestat, Research Triangle Park, North Carolina, USA cNational Center for Environmental Health, Centers for Disease Control and Prevention, DHHS, Atlanta, Georgia, USA dCODA Research, Research Triangle Park, North Carolina, USA eNorwegian Institute of Public Health, Oslo, Norway Collection of urine samples in human studies involves choices regarding shipping, sample preservation, and storage that may ultimately influence future analysis. As more studies collect and archive urine samples to evaluate environmental exposures in the future, we were interested in assessing the impact of urine preservative, storage temperature, and time since collection on nonpersistent contaminants in urine samples. In spiked urine samples stored in three types of urine vacutainers (no preservative, boric acid, and chlorhexidine), we measured five groups of contaminants to assess the levels of these analytes at five time points (0, 24, 48, and 72 h, and 1 week) and at two temperatures (room temperature and 41C). The target chemicals were bisphenol A (BPA), metabolites of organophosphate (OP), carbamate, and pyrethroid insecticides, chlorinated phenols, and phthalate monoesters, and were measured using five different mass spectrometry-based methods. Three samples were analyzed at each time point, with the exception of BPA. -
Endocrine Disruptors and Biodiversity Biological Diversity Faced with Chemical Risks : the Need for a Paradigm Shi
© TONY CAMPBELL / PHO CAMPBELL TONY © T OXPRESS REPORT 2011 Conservation Biodiversity Sustainability Endocrine disruptors and biodiversity biological diversity faced with chemical risks : the need for a paradigm shi page 1 WWF WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 mil- lion supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s bio- logical diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. Concept & design by © ArthurSteenHorneAdamson Contributors Editors in chief, Kévin Jean and Tarik Benmarhnia Editorial team, JC Lefeuvre, H. Roche, A. Cicolella, C. Deshayes Translation team, Ash Browning, Margie Rynn, Olivia Delas Layout, Roland Niccoli, Openscop © 1986 Panda Symbol WWF - World Wide Fund For nature (Formerly World Wildlife Fund) ® “WWF” & “living planet” are WWF Registered Trademarks / “WWF” & “Pour une planète vivante” sont des marques déposées. WWF France. 1 carrefour de Longchamp. 75016 Paris. www.wwf.fr Endocrine disruptors & biodiversity : the need for a paradigm shift TABLE OF CONTENTS PART I : CONTEXT AND GENERAL Details OF ENDOCRINE DISRUPTORS 5 Definitions and general context 5 ED categorization 6 A significant environmental challenge 8 A few regulations 9 PART II : EDS IN THE ENVIRONMENT 10 Main sources of contamination 10 How EDs function in the environment – today and in the future 17 PART III : ThE EFFECTS OF EDS ON LIVING BEINGS 18 how much we know and where to go from here The extent of the ED problem 18 Towards a new approach of EDs 22 CONCLUSION 27 BIBLIOGRAPHY 28 page 3 page 3 © E ZEQUIEL ZEQUIEL S 18 CAGNE TT Minimal number of man-made I / WWF- chemicals found in the blood of 13 families from 12 European C countries during WWF’s 2005 ANON Detox campaign. -
Phytoestrogens in Foods in the Nordic Market
TemaNord 2017:541 Phytoestrogens in foods on the Nordic market the Nordic on foods in 2017:541 Phytoestrogens TemaNord Nordic Council of Ministers Nordens Hus Ved Stranden 18 DK-1061 Copenhagen K www.norden.org Phytoestrogens in foods on the Nordic market Phytoestrogens are plant-derived compounds that may bind to estrogen receptors, but with less affinity than the natural ligand estradiol. They may be biologically active as such or after metabolization in our body. To investigate the occurrence and level of phytoestrogens, scientific literature was screened for data on isoflavones, lignans, stilbenes and coumestans in raw and processed foods of plant origin. The review presents data based both on analytical methods hydrolysing glucosides and non-destructive methods. Many phytoestrogens are phytoalexins. Their production is induced when plants are exposed to abiotic and/or biotic stress. This could explain the rather different levels reported in plants by various investigators, and indicates that many samples are required to describe the levels generally occurring in foodstuffs. The influence of food processing was also considered. Phytoestrogens in foods on the Nordic market A literature review on occurrence and levels Phytoestrogens in foods on the Nordic market A literature review on occurrence and levels Linus Carlsson Forslund and Hans Christer Andersson TemaNord 2017:541 Phytoestrogens in foods on the Nordic market A literature review on occurrence and levels Linus Carlsson Forslund and Hans Christer Andersson ISBN 978-92-893-5046-4 (PRINT) ISBN 978-92-893-5047-1 (PDF) ISBN 978-92-893-5048-8 (EPUB) http://dx.doi.org/10.6027/TN2017-541 TemaNord 2017:541 ISSN 0908-6692 Standard: PDF/UA-1 ISO 14289-1 © Nordic Council of Ministers 2017 Cover photo: Unsplash.com Print: Rosendahls Printed in Denmark Although the Nordic Council of Ministers funded this publication, the contents do not necessarily reflect its views, policies or recommendations. -
Appendix A: Metabolism
DRAFT Appendix A: Metabolism August 21, 2008 Prepared by: Health Effects Division Office of Pesticide Programs US Environmental Protection Agency Page 1 of 82 DRAFT TABLE OF CONTENTS 1. Introduction. ............................................................................................................ 5 2. Metabolism in Adult Animals................................................................................... 7 3. In Vitro Metabolism of Chlorpyrifos ....................................................................... 14 3.1. Cytochrome P450 (The CYP Enzymes)........................................................ 14 3.2. The PON1 Enzyme....................................................................................... 24 3.3. B-Esterases (Carboxylesterases) ................................................................. 27 3.4. Glutathione S-transferases ........................................................................... 28 3.5. KIAA1363 – A Mouse Brain Enzyme ............................................................ 31 3.6. Role of Butyrylcholinesterase in Chlorpyrifos Metabolism ............................ 32 4. Metabolism in Neonatal Animals........................................................................... 33 4.1. Metabolism and Toxicokinetic Studies in Pregnant Dams, Fetuses, and Post- Natal Pups .................................................................................................... 33 4.2. Gestational Exposure (GD14-18): Measurement of TCP in rat maternal and fetal brain and -
The Impact of Xenoestrogens on Effectiveness of Treatment For
Annals of Agricultural and Environmental Medicine 2020, Vol 27, No 4, 526–534 www.aaem.pl REVIEW ARTICLE The impact of xenoestrogens on effectiveness http://creativecommons.org/licenses/by-nc/3.0/pl/ of treatment for hormone-dependent breast https://creativecommons.org/licenses/by-nc/3.0/pl/deed.en cancer – current state of knowledge and perspectives for research Kamila Boszkiewicz1,A-D,F , Ewa Sawicka1,C,E , Agnieszka Piwowar1,A,C-F 1 Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland A – Research concept and design, B – Collection and/or assembly of data, C – Data analysis and interpretation, D – Writing the article, E – Critical revision of the article, F – Final approval of article Boszkiewicz K, Sawicka E, Piwowar A. The impact of xenoestrogens on the effectiveness of treatment for hormone-dependent breast cancer – current state of knowledge and perspectives for research. Ann Agric Environ Med. 2020; 27(4): 526–534. doi: 10.26444/aaem/124165 Abstract Introduction. Breast cancer is the most common cancer occurring in women and causing the highest number of deaths among them. The role of xenoestrogens has been the subject of many studies in the pathogenesis of breast cancer. Less is known about the impact of xenoestrogens on the effectiveness of hormone therapy used to treat breast cancer, and thus possible drug-xenostrogen interactions. Objective. The aim of this review is to summarize the current state of knowledge and present perspectives for further research on the impact of xenoestrogens on the effectiveness of drugs used in the treatment of hormone-dependent breast cancer. -
EURL-SRM - Analytical Observations Report Concerning the Following…
EURL-SRM - Analytical Observations Report concerning the following… o Compound(s): Carbofuran, Benfuracarb, Carbosulfan, Furathiocarb, 3-Hydroxy-Carbofuran o Commodities: Various commodities of plant origin o Method(s): QuEChERS followed by a hydrolysis step o Instrumentation: LC-MS/MS Analysis of Carbofuran (sum) by applying hydrolysis on QuEChERS extracts Reported by: EURL-SRM Version 1 (last update: 20.04.2016) Background information / Initial Observations: Carbofuran (CF) is an insecticide, nematicide and acaricide of the carbamate group. Carbosulfan (CS), furathiocarb (FT) and benfuracarb (BF) are pro-pesticides that degrade to CF, which is the active substance. To account for the high acute neurotoxicity of CF very low toxicological reference values were allocated in 2009 (ARfD 0.00015 mg/kg bw)1 [2]. The metabolite 3-OH-carbofuran (3-OH-CF) was considered exhibiting similar toxicity as the parent. Originally CS, BF and FT were regulated separately from CF and its metabolite 3-OH-CF. The separate MRLs of CS and BF were, however, difficult to enforce as these two compounds are highly susceptible to degradation during extraction and extract storage, especially where the pH of the matrix is low. For this reason, the QuEChERS protocol (EN-15662) foresees not acidifying the extracts after cleanup by dispersive SPE with PSA, to minimize losses between extraction and measurement. But even then, further losses are expected during sample milling, sample extraction (especially in acidic commodities prior to buffering) or storage of homogenates, especially if pH is low and temperatures high. In 2012 the MRLs of CF, BF, CS and FT for most products were lowered to their respective consensus LOQ at that time2. -
And Zero-Valent Iron-Activated Persulfate Oxidation of 3,5,6-Trichloro-2-Pyridinol in an Aquatic System
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Thermo- and Zero-Valent Iron-Activated Persulfate Oxidation of 3,5,6-Trichloro-2-pyridinol in an Aquatic System Roaa Mogharbel University of Central Florida Part of the Chemistry Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Mogharbel, Roaa, "Thermo- and Zero-Valent Iron-Activated Persulfate Oxidation of 3,5,6-Trichloro-2-pyridinol in an Aquatic System" (2019). Electronic Theses and Dissertations, 2004-2019. 6614. https://stars.library.ucf.edu/etd/6614 THERMO- AND ZERO-VALENT IRON-ACTIVATED PERSULFATE OXIDATION OF 3,5,6-TRICHLORO-2-PYRIDINOL IN AN AQUATIC SYSTEM by ROAA MOGHARBEL B.S. Taibah University, Saudi Arabia, 2008 M.Sc. Florida Institute of Technology, Melbourne, 2013 A dissertation submitted in partial fulfillment of the requirements for the degree of the Doctor of Philosophy in the Department of Chemistry in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2018 Major Professor: Cherie L. Yestrebsky © 2018 Roaa Mogharbel ii ABSTRACT The compound 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of the broad-spectrum organophosphorous insecticide chlorpyrifos, is both more persistent and more water soluble than its parent compound. This difference, which allows TCPy to more readily leach into surface water and groundwater, has led to widespread contamination of TCPy in soils and aquatic environments.