Inviscid (Frictionless) Flow ME 306 Fluid Mechanics II • Continuity and Navier-Stokes equations govern the flow of fluids. • For incompressible flows of Newtonian fluids they are Part 1 훻 ⋅ 푉 = 0 퐷푉 휕푉 휌 = 휌 + 푉 ⋅ 훻 푉 = 휌푔 − 훻푝 + 휇훻2푉 Potential Flow 퐷푡 휕푡 • These equations can be solved analytically only for a few problems. • They can be simplified in various ways. These presentations are prepared by −3 Dr. Cüneyt Sert 휇푤푎푡푒푟 = 10 Pa s • Common fluids such as water and air have small viscosities. 휇 = 2 × 10−5 Pa s Department of Mechanical Engineering 푎푖푟 Middle East Technical University • Neglecting the viscous term (zero shear force) gives the Euler’s equation. Ankara, Turkey 퐷푉
[email protected] 휌 = 휌푔 − 훻푝 퐷푡 You can get the most recent version of this document from Dr. Sert’s web site. • Still difficult get a general analytical solution for the unknowns 푝 and 푉. Please ask for permission before using them to teach. You are not allowed to modify them. 1-1 1-2 Inviscid Flow (cont’d) Inviscid and Irrotational Flow • Bernoulli Equation (BE) is Euler’s equation written along a streamline. • To simplify further we can assume the flow to be irrotational. 푝 푉2 휉 = 2휔 = 훻 × 푉 = 0 (irrotational flow) + + 푧 = constant along a streamline 휌푔 2푔 Vorticity (ksi) Angular velocity Exercise: Starting from the Euler’s equation derive the BE. • Question: What’s the logic behind irrotationality assumption? Inviscid flow away from the object (negligible shear forces) • Irrotationality is about velocity gradients. 휕푤 휕푣 휕푢 휕푤 휕푣 휕푢 휉 = − 푖 + − 푗 + − 푘 = 0 휕푦 휕푧 휕푧 휕푥 휕푥 휕푦 Airfoil or 1 휕푉 휕푉 휕푉 휕푉 1 휕 푟푉 1 휕푉 휉 = 푧 − 휃 푖 + 푟 − 푧 푖 + 휃 − 푟 푖 푟 휕휃 휕푧 푟 휕푧 휕푟 휃 푟 휕푟 푟 휕휃 푧 Adapted from http://web.cecs.pdx.edu/~gerry/class/ME322 Viscous flow close to the object and in the wake of it (non negligible shear forces) 1-3 1-4 Inviscid and Irrotational Flow (cont’d) Inviscid and Irrotational Flow (cont’d) • One special irrotational flow is when all velocity gradients are zero.