Final Report on Doubling Farmers' Income: Issues and Strategies For

Total Page:16

File Type:pdf, Size:1020Kb

Final Report on Doubling Farmers' Income: Issues and Strategies For Final Report On Doubling Farmers’ Income: Issues and Strategies for Maharashtra State Prepared By: Submitted to: Department of Economic Analysis & Research National Bank for Agriculture and Rural Development (NABARD) June 2018 Table of Contents List of Abbreviations ............................................................................................................................ 3 List of Exhibits ....................................................................................................................................... 4 List of Tables .......................................................................................................................................... 6 Executive Summary .............................................................................................................................. 8 Chapter 1: Introduction & Background of the study .................................................................... 11 1.1. Introduction .......................................................................................................................... 11 1.2. Review of Literature ............................................................................................................ 12 1.3. Farmer’s Income in India .................................................................................................... 13 1.4. Farmer’s Income in Maharashtra – Overview of Agriculture & Allied Activities ...... 17 Chapter 2: Approach & Methodology ............................................................................................. 21 2.1. Approach ............................................................................................................................... 21 2.2. Methodology ......................................................................................................................... 22 Chapter 3: Overview of Study Districts and Survey Observations ........................................... 26 3.1. Akola ...................................................................................................................................... 26 3.2. Latur ....................................................................................................................................... 44 3.3. Nashik .................................................................................................................................... 60 3.4. Sangli ...................................................................................................................................... 76 Chapter 4: Government Initiatives & Trends in Investment in Agri & Allied Sectors ......... 92 4.1. State & Central Level Initiatives to Benefit Agriculture and Allied Activities ............ 92 4.2. Overview of Trends in Investments in Agriculture & Farm Sector in Maharashtra .. 99 Chapter 5: Cluster Wise Recommendations and Strategies for enhancing the farmers’ income in Maharashtra .................................................................................................................... 106 5.1. Western Maharashtra and Khandesh Cluster ................................................................ 106 5.2. Vidarbha & Marathwada Cluster .................................................................................... 112 5.3. General Recommendations (Applicable To All Clusters) ............................................ 120 5.4. Recommendations for Improving Non-Farm Income .................................................. 129 Annexure A: District Wise List of Stakeholders Consulted ..................................................... 134 Annexure B: Sample Questionnaire – Farmer Survey ............................................................... 137 Key References .................................................................................................................................. 154 Doubling Farmer’s Income: Issues & Strategies for Maharashtra State Page 2 List of Abbreviations APEDA - Agricultural and Processed Food Products Exports Development Authority APMC – Agriculture Produce Marketing Committee ATMA - Agriculture Technology Management Agency BSLLD - Basic Statistics for Local Level Development CAIM - Convergence of Agriculture Interventions in Maharashtra DIDF - Dairy Processing & Infrastructure Development Fund DoAHDF – Department of Animal Husbandry, Dairying & Fisheries FAIDF - Fisheries and Aquaculture Infrastructure Development Fund GBY - Gramin Bhandaran Yojana Ha. - Hectare INM - Integrated Nutrition Management IPM - Integrated Pest Management JSA - Jalyukt Shivar Abhiyan Program KCC – Kisan Credit Card KVK - Krishi Vigyan Kendra MIDH – Mission for Integrated Development of Horticulture MNREGA - Mahatma Gandhi National Rural Employment Guarantee Act MoAFW – Ministry of Agriculture and Farmer Welfare NAIS - National Agriculture Insurance Scheme NARP - National Climate Change Adaptation Research Plan NAPCC - National Action Plan on Climate Change NFSM - National Food Security Mission NICRA - National Initiative on Climate Resilient Agriculture NHB - National Horticulture Board NHM - National Horticulture Mission PGH – Plant Growth Hormone PMFBY – Pradhan Mantri Fasal Bima Yojana PMKSY - Pradhan Mantri Krishi Sinchayee Yojana PPPIAD - PPP-Integrated Agri Development in Maharashtra RADP - Rainfed Area Development Programme RKVY – Rashtriya Krishi Vikas Yojana RRB – Regional Rural Bank Doubling Farmer’s Income: Issues & Strategies for Maharashtra State Page 3 List of Exhibits Exhibit 1: Distribution of agricultural household by source of income - India ................................................ 14 Exhibit 2: Source of Farmer Income in Maharashtra viz a viz India.................................................................. 19 Exhibit 3: Broad Approach for the Study .............................................................................................................. 21 Exhibit 4: Agro Climatic Zones of Maharashtra ................................................................................................... 21 Exhibit 5: Overall Study Design for the Study ...................................................................................................... 25 Exhibit 6: Cropping Pattern - Akola District ......................................................................................................... 26 Exhibit 7: Land Holding Pattern - Akola District ................................................................................................. 26 Exhibit 8: Block wise Respondents - Akola District ............................................................................................. 28 Exhibit 9: Family Structure wise distribution of the Households (%) - Akola District ................................... 28 Exhibit 10: Ownership of assets - Akola District (nos.) ....................................................................................... 28 Exhibit 11: Annual Household Expenditure Distribution - Akola District ....................................................... 29 Exhibit 12: Sources of Irrigation – Akola District ................................................................................................. 31 Exhibit 13: Crop Wise Selling Behaviour – Akola District .................................................................................. 33 Exhibit 14: Crop Wise % of crop lost during transportation – Akola District .................................................. 33 Exhibit 15: Cattle Possession – Akola District (nos.) ............................................................................................ 34 Exhibit 16: Sources of Non-Farm Income - Akola District .................................................................................. 34 Exhibit 17: Average Monthly Income from Non-Farm sources (in INR) Akola District ................................ 35 Exhibit 18: Sources of Formal and Informal Credit in Akola District (nos.) ..................................................... 35 Exhibit 19: Key Reasons for destruction of the crops in Akola District............................................................. 37 Exhibit 20: Key Reasons for Non-adoption of Crop Insurance by the farmers in Akola District .................. 37 Exhibit 21: Composition of Farmers’ Income – Akola District ........................................................................... 38 Exhibit 22: Income trends in last 5 years - Akola District.................................................................................... 38 Exhibit 23: Income & Expenditure Trends of the Farmers - Akola District ...................................................... 38 Exhibit 24: Land Holding Pattern & Cropping Patterns - Latur District .......................................................... 44 Exhibit 25: Gender Profile of the Respondents – Latur District ........................................................................ 46 Exhibit 26: Tehsil wise sample distribution of respondents – Latur District .................................................... 46 Exhibit 27: Family Structure of respondents surveyed – Latur District ............................................................ 46 Exhibit 28: Sources of Irrigation – Latur District .................................................................................................. 48 Exhibit 29: Livestock Possession – Latur District (nos.) .....................................................................................
Recommended publications
  • Recommendations to Enhance the Impact of Sustainability Standards on Smallholder Cotton Farmers in Maharashtra
    RECOMMENDATIONS TO ENHANCE THE IMPACT OF SUSTAINABILITY STANDARDS ON SMALLHOLDER COTTON FARMERS IN MAHARASHTRA Partner WWF IS Knowledge Partner WORKING WITH IKEA ON COTTON FOREST AND WATER Government of Maharashtra © WWF-India Published by WWF-India Reproduction is authorized, provided the source is acknowledged, save where otherwise stated. Cover Image: Licensed under Creative Commons WWF-India WWF India is committed to creating and demonstrating practical solutions that help conserve India’s ecosystems and rich biodiversity. Marking 50 years of conservation journey in the country, WWF India works towards finding science-based and sustainable solutions to address challenges at the interface of development and conservation. Today, with over 70 offices across 20 states, WWF India’s work spans across thematic areas including the conservation of key wildlife species and their habitats, management of rivers, wetlands and their ecosystems, climate change adaptation, driving sustainable solutions for business and agriculture, empowering local communities as stewards of conservation, combatting illegal wildlife trade and inspiring students and citizens to take positive action for the environment through outreach and awareness campaigns. WWF India is part of the WWF International Network, with presence in over 100 countries across the globe IKEA IKEA is a global leader in household products, committed to creating a positive impact on people, society and the planet. WWF and IKEA have partnered since 2002 to protect some of the world’s most precious natural resources. In 2005, WWF and IKEA set out to transform cotton production and secure a sustainable future for the industry by helping farmers earn a better living and improving working conditions, as well as reducing impacts from pesticide use and saving precious water resources.
    [Show full text]
  • How Do Atmospheres Change Over Time? the Greenhouse Effect
    Activity #5 How Do Atmospheres Change Over Time? The Greenhouse Effect [Adult] Adapted from: Global Warming & The Greenhouse Effect, Great Explorations in Math and Science (GEMS) Lawrence Hall of Science, 1997, by the Regents of the University of California ISBN: 0-912511-75-3. Unless otherwise noted, all images are courtesy of SETI Institute. 1. Introduction In this activity, Cadettes will observe how the greenhouse effect can change an atmosphere on Mars or on Earth. They will “Think like a scientist. Be a scientist!” 2. Science Objectives You will: • construct models to test ideas about processes that cannot be directly studied on Earth or Mars; • appreciate that the atmosphere is a large and complex system, so experiments concerning it are difficult to perform; and • use skills you have learned about atmospheric composition and apply that knowledge to new situations. 3. Materials For each group of 4–6 Cadettes. • [2] 2 liter (0.5 gal) clear soda bottles with labels removed and tops cut off. These are the Atmosphere Model Chambers. Advance preparation required (see page 2). • [1] pair of scissors for constructing a set of Atmosphere Model Chambers • [1] black permanent marker for constructing a set of Atmosphere Model Chambers • [2] identical thermometers, one for each chamber; view on Amazon.com: http://tinyurl.com/lkrvzvq • sufficient cardboard to prepare backing for each thermometer • 5–10 cm (about 4 in) of clear tape to attach thermometers to cardboard and to inside of each chamber • [1] piece of plastic wrap approximately 15 cm x 15 cm (6 x 6 in) • [1] rubber band large enough to fit the circumference of chamber and secure plastic wrap • chart of electromagnetic spectrum of light (EMS); print in advance • 250-watt infrared heat lamp (bulb) in a fixture with hood.
    [Show full text]
  • Invasive Plants in Your Backyard!
    Invasive Plants In Your Backyard! A Guide to Their Identification and Control new expanded edition Do you know what plants are growing in your yard? Chances are very good that along with your favorite flowers and shrubs, there are non‐native invasives on your property. Non‐native invasives are aggressive exotic plants introduced intentionally for their ornamental value, or accidentally by hitchhiking with people or products. They thrive in our growing conditions, and with no natural enemies have nothing to check their rapid spread. The environmental costs of invasives are great – they crowd out native vegetation and reduce biological diversity, can change how entire ecosystems function, and pose a threat Invasive Morrow’s honeysuckle (S. Leicht, to endangered species. University of Connecticut, bugwood.org) Several organizations in Connecticut are hard at work preventing the spread of invasives, including the Invasive Plant Council, the Invasive Plant Working Group, and the Invasive Plant Atlas of New England. They maintain an official list of invasive and potentially invasive plants, promote invasives eradication, and have helped establish legislation restricting the sale of invasives. Should I be concerned about invasives on my property? Invasive plants can be a major nuisance right in your own backyard. They can kill your favorite trees, show up in your gardens, and overrun your lawn. And, because it can be costly to remove them, they can even lower the value of your property. What’s more, invasive plants can escape to nearby parks, open spaces and natural areas. What should I do if there are invasives on my property? If you find invasive plants on your property they should be removed before the infestation worsens.
    [Show full text]
  • 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture
    www.water-alternatives.org Volume 14 | Issue 2 Shah, S.H.; Harris, L.M.; Johnson, M.S. and Wittman, H. 2021. A 'drought-free' Maharashtra? Politicising water conservation for rain-dependent agriculture. Water Alternatives 14(2): 573-596 A 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture Sameer H. Shah Institute for Resources, Environment & Sustainability (IRES), The University of British Columbia, Vancouver, Canada; [email protected] Leila M. Harris Institute for Resources, Environment & Sustainability (IRES) and the Institute for Gender, Race, Sexuality and Social Justice (GRSJ), The University of British Columbia, Vancouver, Canada; [email protected] Mark S. Johnson Institute for Resources, Environment & Sustainability (IRES) and the Department of Earth, Ocean & Atmospheric Sciences, The University of British Columbia, Vancouver, Canada; [email protected] Hannah Wittman Institute for Resources, Environment & Sustainability (IRES) and the Centre for Sustainable Food Systems, The University of British Columbia, Vancouver, Canada; [email protected] ABSTRACT: Soil moisture conservation ('green water') and runoff capture ('blue water') can reduce agricultural risks to rainfall variation. However, little is known about how such conjoined initiatives articulate with social inequity when up-scaled into formal government programmes. In 2014, the Government of Maharashtra institutionalised an integrative green-blue water conservation campaign to make 5000 new villages drought-free each year (2015- 2019). This paper analyses the extent to which the campaign, Jalyukt Shivar Abhiyan, enhanced the capture, equity, and sustainability of water for agricultural risk reduction. We find government interests to demonstrate villages as 'drought-free' affected the character and implementation of this integrative campaign.
    [Show full text]
  • Jalyukta Shivar Campaign- a Solution to Overcome Water Crisis in Maharashtra
    7 IV April 2019 https://doi.org/10.22214/ijraset.2019.4599 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com Jalyukta Shivar Campaign- A Solution to Overcome Water Crisis in Maharashtra Inamdar S.R. Department of Civil Engineering, KSGB’S BIGCE, Solapur, India. Abstract: Irrigation systems in India since ancient times and continuing through even the Mughal times were highly localized There were check dams, wells, ponds and tanks in every village or shared, governments subsidized these for maintenance this in every village, governments subsidized these for maintenance and system continued through the ages. They become handy during droughts and if these dried, governments sponsored relief for famines. In building the canals and then charging higher for irrigated land, British ignored the traditional systems or irrigation which fell into disrepair and eventually lost out. This led to large parts of the country which could not be covered by canal irrigation losing out the local irrigation and completely relying on rain. After independence, the obsession with large dams and canals continued and not many governments thought of reviving the traditional irrigation which worked for centuries. Meanwhile, droughts, water scarcity, deaths continued. The countryside especially in water starved parts of Maharashtra. Water is one of the earth’s most precious resources. Though, 70% of Earth’s surface is water a major 97.5% of this is salt water and only 2.5% is freshwater. Moreover, less than 1% out of this 2.5% amount of freshwater is accessible (the majority is frozen in ice caps or as soil moisture) with growing population this amount of water is becoming insufficient.
    [Show full text]
  • West Lake Woven Wood Shade Section
    West Lake Woven Wood Shade Section Effective April 15, 2014 Save a life: "Install Safety Tension Devices!" Woven Wood Measuring Instructions Measuring Inside Mount (IB) Shades: Measure the exact width (A) and length (B) of the window opening as shown. The factory will deduct ½” overall from the window width for clearance. On all inside mount shades, a small light gap will be visible. Measuring Outside Mount (OB) Shades: Measure the exact width (A) and length (B) of the window opening you wish to cover. The shade should cover the window opening by at least 2” on both the width and length. To cover a window sill, provide a measurement (C) beyond the sill. Outside Mount Inside Mount Measuring Arch Top Valances for Woven Wood Shades: For inside mount shades, measure the exact width and tallest length inside the window opening. For outside mount shades, measure the desired width and tallest length. Make sure to measure the length of outside mount shades at its tallest point. Arch Top woven wood shades must be perfect arches where the length equals ½ the width. For arch top valances, measure dimensions A, X, & Y. For pricing, use the width and tallest length measurement. Make sure to add the arch top shade surcharge. Measuring Angled Shades: It is critical to measure all four sides of the window opening. For inside mount shades, measure the inside of the window opening and for outside mount shades, add the desired overlap. Measure the slope angle with a protractor and provide the angle in degrees. Indicate all measurements on a template to be sent to the factory.
    [Show full text]
  • 8040 Introduction to Natural Resources and Ecology Systems
    Introduction to Natural Resources and Ecology Systems 8040/36 weeks Table of Contents Acknowledgments ......................................................................................................................................... 1 Course Description ........................................................................................................................................ 2 Task Essentials Table .................................................................................................................................... 2 Curriculum Framework ................................................................................................................................. 6 Exploring Leadership Skills through FFA ................................................................................................... 6 Exploring Leadership Opportunities through FFA ....................................................................................... 7 Understanding Natural Resource Management ............................................................................................ 9 Protecting the Environment ........................................................................................................................ 15 Managing Forest Resources ........................................................................................................................ 25 Managing Wildlife Resources ....................................................................................................................
    [Show full text]
  • Water Resources Management in India
    Kushvinder Vohra Commissioner (SPR) DoWR, RD & GR, Ministry of Jal Shakti, Govt. of India Roorkee Water Conclave 2020 26th – 29th February 2020, IIT Roorkee Water Availability Particulars Quantum BCM % Precipitation received 4000 100 Present live storage capacity is Water Resource Potential 1869 46.7 255.6 BCM, additional 50 BCM Utilizable Water Resource 1123 28.1 expected from ongoing dam Ground Water 433 10.8 projects. Surface Water 690 17.2 Current Utilization 710 17.8 Total surface water capacity: 450 SW 450 11.3 BCM (65% of 690 BCM); part lost due to siltation. GW 260 6.5 Source: CWC, NCIWRD Stage of ground water development: 60% • Space & time related variability • Per capita availability • Increasing demand Source: National Register of Large Dams, CWC (2019) Roorkee Water Conclave 2020 26th – 29th February 2020, IIT Roorkee Spatial & Temporal Variation of Rainfall 25 23.76 19.89 20 15.42 15 14.19 Percent 10 7.69 6.03 5 3.46 3.45 2.12 1.24 1.33 1.42 0 Rainfall in mm Average 890 Mawsynram, Max. 11,000 Meghalaya Min. 100 Western Rajasthan Source: IMD Roorkee Water Conclave 2020 26th – 29th February 2020, IIT Roorkee Per Capita Water Availability(National Average) 6000 5177 5000 Water Stress Line ) 1700 cu. m. per person per 3 year 4000 Water Scarcity Line 1000 cu. m. per person per 3000 year 2200 1820 2000 1545 1340 1140 1000 0 Annual Per Capita Availability (m Availability Capita Per Annual 1951 1991 2001 2011 2025 2050 World’s average per capita water availability 42370 m3 (1804) 5850 m3 (2014) Roorkee Water Conclave 2020 26th –
    [Show full text]
  • Mahagenco Is First Power Utility in India to Try Use Sewage Water for Secondary Uses in Power Station
    Contd- 7. Theft of water by using pumps on water lines from dam to TPS. 8. Plant premise is not compact hence piping's are long. 9. Most of the pipes are underground, Hence identification and attending leakage takes time. 10. Temperature of Chandrapur city touches 46 oC in summer, therefore continuous water sprinkling at coal yard & nearby CHP area is required to reduce fugitive emission. 11. Both one day reservoirs are open to atmosphere for high rate of evaporation. 1 5. Technologies adopted to reduce water consumption 2 Introduction • Five units have already crossed 25 years of life. • Power stations was designed with water systems having liberal considerations for various requirements and high design margins. • However as the requirements became stringent new technologies were introduced to save water. • TPS is now using Zero discharge concept and no water is let out. 3 Water Recovery System Waste Water Recovery Cycle ETP - I Ash Slurry Disposal Ash Bund STP U # 1 to 7 ETP - II Weir Well Ash Recycling ETP - III Discharge Pump House 4 1. Sewage Treatment Plant-I • Commissioned in Apr 1987. • Installed capacity of 80 m3/Hr • Treats Colony sewage drains. • Clear water is fed to sludge disposal pump House. 5 Sewage Treatment Plant-I 6 2. Sewage Treatment Plant-II • Commissioned in Aug 1992. • Installed capacity of 160 m3/Hr • Treats Colony sewage drains. • Clear water is fed to sludge disposal pump House. 7 Sewage Treatment Plant-II 8 3. Effluent Treatment Plant-1 • Commissioned in Jan 1997. • Installed capacity of 1600 m3/Hr • Treats power station drains.
    [Show full text]
  • Natural Resources Inventory
    Natural Resources Inventory Columbia Metropolitan Planning Area Review Draft (10-1-10) NATURAL RESOURCES INVENTORY Review Draft (10-1-10) City of Columbia, Missouri October 1, 2010 - Blank - Preface for Review Document The NRI area covers the Metropolitan Planning Area defined by the Columbia Area Transportation Study Organization (CATSO), which is the local metropolitan planning organization. The information contained in the Natural Resources Inventory document has been compiled from a host of public sources. The primary data focus of the NRI has been on land cover and tree canopy, which are the product of the classification work completed by the University of Missouri Geographic Resource Center using 2007 imagery acquired for this project by the City of Columbia. The NRI uses the area’s watersheds as the geographic basis for the data inventory. Landscape features cataloged include slopes, streams, soils, and vegetation. The impacts of regulations that manage the landscape and natural resources have been cataloged; including the characteristics of the built environment and the relationship to undeveloped property. Planning Level of Detail NRI data is designed to support planning and policy level analysis. Not all the geographic data created for the Natural Resources Inventory can be used for accurate parcel level mapping. The goal is to produce seamless datasets with a spatial quality to support parcel level mapping to apply NRI data to identify the individual property impacts. There are limitations to the data that need to be made clear to avoid misinterpretations. Stormwater Buffers: The buffer data used in the NRI are estimates based upon the stream centerlines, not the high water mark specified in City and County stormwater regulations.
    [Show full text]
  • Downloaded and Translated from Marathi to English, a Three- Tiered Selection Strategy Was Used to Identify the Three Villages Suitable for Sampling
    ADVANCING LIVELIHOOD WATER SECURITY IN THE RURAL GLOBAL SOUTH by Sameer H. Shah B.ES (Hons. Co-operative), University of Waterloo, 2012 M.Sc., The University of British Columbia, 2015 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Resources, Environment and Sustainability) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2021 © Sameer H. Shah, 2021 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Advancing Livelihood Water Security in the Rural Global South submitted by Sameer H. Shah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Resources, Environment and Sustainability Examining Committee: Dr. Leila M. Harris, Institute for Resources, Environment and Sustainability, and the Institute for Gender, Race, Sexuality and Social Justice, The University of British Columbia (UBC) Supervisor Dr. Hannah Wittman, Institute for Resources, Environment and Sustainability, and Faculty of Land and Food Systems, The University of British Columbia (UBC) Supervisory Committee Member Dr. Mark Johnson, Institute for Resources, Environment and Sustainability, and the Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia (UBC) Supervisory Committee Member Dr. Shannon M. Hagerman, Department of Forest Resources Management, The University of British Columbia (UBC) University Examiner Dr. David R. Boyd, Institute for Resources, Environment and Sustainability, and the School of Public Policy and Global Affairs, The University of British Columbia (UBC) University Examiner ii Abstract Climate change and variation, and rising demand for freshwater increasingly impact water security for humans, ecosystems, and integrated social-ecological systems.
    [Show full text]
  • International Journal of Innovative Technology and Exploring Engineering
    International Journal of Innovative Technology and Exploring Engineering ISSN : 2278 - 3075 Website: www.ijitee.org Volume-9 Issue-10, AUGUST 2020 Published by: Blue Eyes Intelligence Engineering and Sciences Publication xploring En E gi d ne an e r y in g g lo o n h c e T IjItEe e I n v i t t e E a X r v P N n o L O a O I n T t R A i o I V n N O I G N n IN f a o l l J a o r n u www.ijitee.org Exploring Innovation Editor-In-Chief Dr. Shiv Kumar Ph.D. (CSE), M.Tech. (IT, Honors), B.Tech. (IT), Senior Member of IEEE, Member of the Elsevier Advisory Panel CEO, Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP), Bhopal (MP), India Associate Editor-In-Chief Dr. Takialddin Al Smadi Professor, Department of Communication and Electronics, Jerash Universtiy, Jerash, Jordan Dr. Vo Quang Minh Senior Lecturer and Head, Department of Land Resources, College of Environment and Natural Resources (CENRes), Can Tho City, Vietnam. Dr. Stamatis Papadakis Lecturer, Department of Preschool Education, University of Crete, Greece. Dr. Ali OTHMAN Al Janaby Lecturer, Department of Communications Engineering, College of Electronics Engineering University of Ninevah, Iraq. Dr. Rabiul Ahasan Professor, Department of Industrial Engineering, King Saud University, Saudi Arabia. Dr. Hakimjon Zaynidinov Professor and Head, Department of Computer Science, Tashkent University of Information Technologies, Uzbekistan. Prof. MPS Chawla Ex-Chairman, IEEE MP Sub-Section, India, Professor-Incharge (head)-Library, Associate Professor in Electrical Engineering, G.S.
    [Show full text]