Venom Toxins: Plausible Evolution from Digestive Enzymes1

Total Page:16

File Type:pdf, Size:1020Kb

Venom Toxins: Plausible Evolution from Digestive Enzymes1 AMER. ZOOL., 23:427-430 (1983) Venom Toxins: Plausible Evolution from Digestive Enzymes1 ELAZAR KOCHVA,2 ORA NAKAR, AND MICHAEL OVADIA Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel SYNOPSIS Some hydrolytic enzymes are common to the pancreas, the mammalian salivary glands and the snake venom glands. Phospholipase A, which is found in elapid and viperid venoms and in the mammalian pancreas, shows 29 common amino acid residues out of Downloaded from https://academic.oup.com/icb/article/23/2/427/302344 by guest on 23 September 2021 118-125 positions. Presynaptic neurotoxins and other venom toxins are usually composed of 2-3 units or subumts, one of which is a phospholipase. The Vipera palaestmae two- component toxin retains its lethality when the enzyme is replaced by heterologous venom phospholipases, but not by the pig pancreatic enzyme. This toxin is neutralized by a factor found in the blood serum of snakes, which binds to the phospholipase and inhibits its activity. The blood serum of snakes also neutralizes hemorrhagins and inhibits the protease activity of the venom. It is hypothesized that the developing venom glands first produced enzymes that were already secreted by the pancreas and against which inhibitors were present in the blood. These inhibitors facilitated the evolution of enzyme-based toxins by neutralizing any damaging substances that might have escaped from the venom glands. It has been suggested that enzymes pre- certain elapid venom enzymes (Table 1). ceded toxins during the evolution of the Phospholipases from Viperidae venoms are venom glands in snakes (Strydom, 1977; the most divergent not only in certain areas Gans, 1978) possibly aiding in the digestion of their sequence, but also in the presence of prey and preventing its putrefaction of a seven residue COOH-terminal exten- (Thomas and Pough, 1979; Pough and sion (Heinrikson et al., 1977). Groves, 1983). At least some of these Many venom phospholipases are actually enzymes have their counterparts in the or potentially toxic, sometimes when com- pancreas, a gland which is well developed bined with another subunit or component in all vertebrate animals, including which has no known enzymatic activity. In amphibians and fish. Enzymes of mam- the two-component toxin of Vipera palaes- malian salivary glands are also similar to tinae the enzyme can be replaced by het- those of the pancreas (Hosoi et al., 1981); erologous phospholipases, provided they the primary structure of a-amylase from are taken from viperid or elapid venoms. mouse parotid gland, for instance, differs The pig pancreatic enzyme is not lethal in from the pancreatic enzyme only by 12% this combination, despite its similarity to of its sequence (Hagenbiichle et al., 1980). the elapid phospholipases (Simon et al., Phospholipase A is also a pancreatic 1980, Table 2). These experiments suggest enzyme that is found in Duvernoy's and venom glands of snakes and in Heloderma (cf., Kochva et al., 1980 for references). TABLE 1. Sequence homology of phospholipase A from Thus far, about 20 phospholipases have mammalian pancreas and from snake venoms. been sequenced and all show a high degree Number of Number common Number of homology, the most pronounced being of amino acid of total between the mammalian pancreatic and Source engines residues residues All enzymes 17 29 118-125 All snakes 14 33 118-122 Elapidae + Ungulata 15 35 118-125 Viperidae 6 42 118-122 ' From the Symposium on Adaptive Radiation Within Elapidae 12 42 118-119 a Highly Specialized System: The Diversity of Feeding Mech- Bungarus multicinctus 2 69 118-120 anisms of Snakes presented at the Annual Meeting of Notechis scutatus 3 78 119 the American Society of Zoologists, 27-30 December Ungulata 3 88 123-125 1981, at Dallas, Texas. 2 104 2 Incumbent: The Rose and Norman Lederer Chair Artiodactyla 123-124 in Experimental Biology. Mainly after: Kondo, Toda, and Narita, 1981 427 428 KOCHVA ET AL. TABLE 2. Substitution of phosphohpase A of Vipera palaestinae two-component toxin by heterologous enzymes. Mixture injected (/jg) Xon-enzjmatic 1 oxicity Source ofPLA Phospholipas* component (7i dead mice) Vipera palaestinae Viperidae 10 10 45 Pseudocerastes fieldi Viperidae 20 10 83 Waltennnesia aegyptia Elapidae 25 10 83 Sus scrofa Suidae 100 10 0 After: Simon et al., 1980. Downloaded from https://academic.oup.com/icb/article/23/2/427/302344 by guest on 23 September 2021 that the enzyme activity is required but not remained, however: Not only are the ven- sufficient for the lethal effects of the Vipera omous snakes resistant to their own and palaestinae two-component toxin. Indeed, other venoms, but non-venomous snakes Condrea et al. (1981a, b) have shown that are resistant as well and their blood serum the toxic effects of phospholipase can be neutralizes a wide variety of venoms. abolished by a chemical modification of the Kihara et al. (1977a, b), Philpot et al. lysine residues while preserving half or (1978) and others have also shown that the more of the enzymatic activity. When the blood serum of snakes, both venomous and supposedly enzymatic active site is blocked, non-venomous, in addition to neutralizing both enzymatic and lethal activities are the lethality of several venoms also inhibit abolished. their phospholipase and protease activities. In the evolutionary line of venomous Mammalian sera sometimes neutralize the snakes, an additional process appears to be hemorrhagic but not the proteolytic activ- of considerable importance and this ity of Viperidae (Huang and Perez, 1980) involves the well-known resistance of snakes or vice versa (Nakar et al., unpublished). to snake venoms (cf., Omori-Satoh et al., The purified serum factor of Vipera palaes- 1972; Kihara et al., 1977a, b; Ovadia and tinae inhibits more than half of the phos- Kochva, 1977;Philpot^a/., 1978). Inmost pholipase activity of the two-component cases, this resistance could be attributed to toxin and at the same time completely neu- factors found in the blood serum that com- tralizes its lethal effects (Simon etal, 1980). bine with venom components and neutral- Most recently we have obtained similar ize their toxicity. One puzzling question results with snake sera that neutralize the TABLE 3. Xeutralization of hemorrhagins and inhibition of gelahnases from the venoms of Viperidae and Atractaspis by blood sera ofviperid, elapid, and colubnd snakes. Hemorrhagin VI pern Erhis Almcl^m Vipera F.rhls .AI/JM Atrarlatpt* Blood serum rnlornln palae^linae colorala rertt\te\ piignddensi* Viperidae Vipera palaestinae Echis color a ta Aspis cerastes Vipera ammodytes Elapidae Xaja nigncollis Walterinnesia aegyptia Colubridae Malpolon monspessulanus Xatnx tessellata Coluber jugularis + + Complete neutralization or inhibition at the dosages tested; + Partial neutralization or inhibition; — Xo neutralization or inhibition. VENOM TOXINS 429 VENOMS HEMORRHAGINS TWO COMPONENT TOXINS PHOSPHOLIPASE PROTEASE PRESYNAPTIC NEUROTOXINS \ Downloaded from https://academic.oup.com/icb/article/23/2/427/302344 by guest on 23 September 2021 CARDIOTOXINS POSTSYNAPTIC NEUROTOXINS PROTEASE INHIBITOR PHOSPHOLIPASE INHIBITOR ANTI-HEMORRHAGIN ANTI-TWO COMPONENT TOXIN SNAKE BLOOD Fie. 1. Tentative diagram for the evolution of toxins and their antidotes in snakes. hemorrhagic effects and inhibit protease developed from these enzymes in the (gelatinase) activity of Viperidae and Atrac- evolving venomous snakes the blood serum taspis venoms (Table 3; Nakar <>/«/., unpub- inhibitors could function as toxin antidotes lished). Of the nine ophidian sera checked, and prevent any possible damage from all neutralize the hemorrhagin of Viperi- venom components that might have found dae venoms at least partially, while only their way into the blood stream (Fig. 1). two show a marked effect on Atractaspis Thus far, no blood serum antidotes were hemorrhagin. The gelatinase activity is also found against the major toxins of Elapidae generally inhibited, the best results being and the venom of Walterinnesia aegyptia is obtained with the sera of viperid snakes. not even neutralized by its own serum; the We have encountered some difficulties mechanism of the resistance of this snake in assessing the antiproteolytic activity, to its venom remains to be explained (cf., mainly with the sera of Elapidae and Co- Ovadia and Kochva, 1977). lubridae, because of a potentiating effect that appeared at certain ratios of the ACKNOWLEDGMENTS venom-serum mixture (cf., Philpot and We thank Prof. A. Bdolah, Prof. K. Deutsch, 1956). We are now trying to sep- Rondo and Dr. D. J. Strydom for com- arate the different activities of the serum ments, and Mrs. M. Wollberg and Mrs. C. in order to obtain a pure protein inhibitor Meyer for help in the preparation of the and to check whether it is identical with manuscript. the anti-hemorrhagic factor. The points raised above seem to suggest REFERENCES a co-evolutionary trend whereby enzymes Condrea E., J. E. Fletcher, B. E. Rapuano, C. C. Yang, of pancreatic origin were subsequently and P. Rosenberg. 1981a. Effect of modification produced by oral glands of reptiles and of one histidine residue on the enzymatic and mammals. Since the pancreas is a relatively pharmacological properties of a toxic phospho- lipase A, from Naja nigncolhs snake venom and early gland, it may be assumed that enzyme less toxic phospholipases A, from Hemachatus inhibitors were already present in the blood hemachalus and \'aja naja atra snake venoms. serum of reptilian ancestors. When toxins Toxicon 19:61-71. Downloaded from https://academic.oup.com/icb/article/23/2/427/302344 by guest on 23 September 2021 430 KOCHVA ET AL. Condrea, E.,J. E. Fletcher, B. E. Rapuano, C. C. Yang, Kochva, E., U. Oron, M. Ovadia, T. Simon, and A. and P. Rosenberg. 1981i. Dissociation of enzy- Bdolah. 1980. Venom glands, venom synthesis, matic activity from lethality and pharmacological venom secretion and evolution. In D. Eaker and properties by carbamylation of lysines in Xaja T.
Recommended publications
  • Saxitoxin Poisoning (Paralytic Shellfish Poisoning [PSP])
    Saxitoxin Poisoning (Paralytic Shellfish Poisoning [PSP]) PROTOCOL CHECKLIST Enter available information into Merlin upon receipt of initial report Review information on Saxitoxin and its epidemiology, case definition and exposure information Contact provider Interview patient(s) Review facts on Saxitoxin Sources of poisoning Symptoms Clinical information Ask about exposure to relevant risk factors Type of fish or shellfish Size and weight of shellfish/puffer fish or other type of fish Amount of shellfish/puffer fish or other type of fish consumed Where the shellfish/puffer fish or other type of fish was caught or purchased Where the shellfish/puffer fish or other type of fish was consumed Secure any leftover product for potential testing Restaurant meals Other Contact your Regional Environmental Epidemiologist (REE) Identify symptomatic contacts or others who ate the shellfish/puffer fish or other type of fish Enter any additional information gathered into Merlin Saxitoxin Poisoning Guide to Surveillance and Investigation Saxitoxin Poisoning 1. DISEASE REPORTING A. Purpose of reporting and surveillance 1. To gather epidemiologic and environmental data on saxitoxin shellfish, Florida puffer fish or other type of fish poisoning cases to target future public health interventions. 2. To prevent additional cases by identifying any ongoing public health threats that can be mitigated by identifying any shellfish or puffer fish available commercially and removing it from the marketplace or issuing public notices about the risks from consuming molluscan shellfish from Florida and non-Florida waters, such as from the northern Pacific and other cold water sources. 3. To identify all exposed persons with a common or shared exposure to saxitoxic shellfish or puffer fish; collect shellfish and/or puffer fish samples for testing by the Florida Fish and Wildlife Conservation Commission (FWC) and the U.S.
    [Show full text]
  • Letter from the Desk of David Challinor December 1992 We Often
    Letter from the Desk of David Challinor December 1992 We often identify poisonous animals as snakes even though no more than a quarter of these reptiles are considered venomous. Snakes have a particular problem that is ameliorated by venom. With nothing to hold its food while eating, a snake can only grab its prey with its open mouth and swallow it whole. Their jaws can unhinge which allows snakes to swallow prey larger in diameter than their own body. Clearly the inside of a snake's mouth and the tract to its stomach must be slippery enough for the prey animal to slide down whole, and saliva provides this lubricant. When food first enters our mouths and we begin to chew, saliva and the enzymes it contains immediately start to break down the material for ease of swallowing. We are seldom aware of our saliva unless our mouths become dry, which triggers us to drink. When confronted with a chocolate sundae or other favorite dessert, humans salivate. The very image of such "mouth­ watering" food and the anticipation of tasting it causes a reaction in our mouths which prepares us for a delightful experience. Humans are not the only animals that salivate to prepare for eating, and this fluid has achieved some remarkable adaptations in other creatures. scientists believe that snake venom evolved from saliva. Why it became toxic in certain snake species and not in others is unknown, but the ability to produce venom helps snakes capture their prey. A mere glancing bite from a poisonous snake is often adequate to immobilize its quarry.
    [Show full text]
  • Cyanobacterial Toxins: Saxitoxins
    WHO/SDE/WSH/xxxxx English only Cyanobacterial toxins: Saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments Version for Public Review Nov 2019 © World Health Organization 20XX Preface Information on cyanobacterial toxins, including saxitoxins, is comprehensively reviewed in a recent volume to be published by the World Health Organization, “Toxic Cyanobacteria in Water” (TCiW; Chorus & Welker, in press). This covers chemical properties of the toxins and information on the cyanobacteria producing them as well as guidance on assessing the risks of their occurrence, monitoring and management. In contrast, this background document focuses on reviewing the toxicological information available for guideline value derivation and the considerations for deriving the guideline values for saxitoxin in water. Sections 1-3 and 8 are largely summaries of respective chapters in TCiW and references to original studies can be found therein. To be written by WHO Secretariat Acknowledgements To be written by WHO Secretariat 5 Abbreviations used in text ARfD Acute Reference Dose bw body weight C Volume of drinking water assumed to be consumed daily by an adult GTX Gonyautoxin i.p. intraperitoneal i.v. intravenous LOAEL Lowest Observed Adverse Effect Level neoSTX Neosaxitoxin NOAEL No Observed Adverse Effect Level P Proportion of exposure assumed to be due to drinking water PSP Paralytic Shellfish Poisoning PST paralytic shellfish toxin STX saxitoxin STXOL saxitoxinol
    [Show full text]
  • Understanding Fungal (Mold) Toxins (Mycotoxins) Michael P
    ® ® KFSBOPFQVLCB?O>PH>¨ FK@LIKUQBKPFLK KPQFQRQBLCDOF@RIQROB>KA>QRO>IBPLRO@BP KLTELT KLTKLT G1513 Understanding Fungal (Mold) Toxins (Mycotoxins) Michael P. Carlson, Diagnostic Toxicologist/Analytical Chemist; and Steve M. Ensley, Veterinary Toxicologist of the immune system. Common mycoses include athlete’s This NebGuide briefly discusses mycotoxins commonly foot and ringworm. encountered in grains and feeds used in Nebraska and the mycotoxicoses they cause. Myco toxin sources and clini- Diagnosis and Treatment of Mycotoxicoses cal signs, lesions, diagnostic aids and treatment for each mycotoxicosis are listed. Different mycotoxins cause different diseases. Although they all are called mycotoxicoses, they are very different from Mycotoxins are chemicals produced by fungi (molds) each other. under certain conditions. They are not essential for fungal Modern agricultural practices make acute mycotoxicoses growth or reproduction, and are toxic to animals or humans. with high death loss (mortality) rare. Chronic mycotoxicoses Scientists do not yet know how many mycotoxins may ex- are often suspected when clinical signs include poor perfor- ist, even though more than 250 have been detected. They mance, ill thrift, or increased incidence of infectious diseases. represent many different kinds of chemicals. For many, if Establishing cause and effect relationships between consump- not most, their toxicological characteristics have not been tion of mycotoxin-contaminated feed and vague chronic fully determined. conditions is very difficult. Diseases in animals caused by mycotoxins are called my- Diagnosis of mycotoxicoses is usually not very easy. cotoxicoses. There are many different kinds of mycotoxicoses Exposure cannot be established by detection of mycotoxins in because there are many different kinds of mycotoxins.
    [Show full text]
  • Effects of Aflatoxins Contaminating Food on Human Health - Magda Carvajal and Pável Castillo
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - – Vol.VII - Effects of Aflatoxins Contaminating Food on Human Health - Magda Carvajal and Pável Castillo EFFECTS OF AFLATOXINS CONTAMINATING FOOD ON HUMAN HEALTH Magda Carvajal and Pável Castillo Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Colonia Copilco, Delegación Coyoacán. 04510 México, D.F.(Institute of Biology, National Autonomous University of Mexico). Keywords: Mycotoxins, aflatoxins, cancer, mutagenesis, food contamination, DNA adducts, biomarkers, hepatic diseases, cirrhosis, hepatitis, toxicology, chemical mutations. Contents 1. Aflatoxins, production, occurrence, chemical structure 1.1 Definition of Aflatoxins 1.2. Aflatoxin Producing Fungi and Production Conditions 1.3. Occurrence 1.4. Chemical Structure and Types 1.5. Biological Properties 2. Biosynthetic pathway 2.1. Biotransformation of AFB1 3. Analytical methods for aflatoxin study 4. Aflatoxin metabolism 5. Toxic effects of aflatoxins on animal and human health 5.1 In Plants 5.2. In Animals 5.3. In Humans 6. Economic losses due to aflatoxin contamination 7. Control 7.1. Preventive Measures 7.2. Structural Degradation after Chemical Treatment 7.3. Modification of Toxicity by Dietary Chemicals 7.4. Detoxification 7.5. ChemosorbentsUNESCO – EOLSS 7.6. Radiation 8. Legislation 9. Conclusions Glossary SAMPLE CHAPTERS Bibliography Biographical Sketches Summary Aflatoxins (AF) are toxic metabolites of the moulds Aspergillus flavus, A. parasiticus and A. nomius. AF link to DNA, RNA and proteins and affect all the living kingdom, from viruses to man, causing acute or chronic symptoms, they are mutagens, hepatocarcinogens, and teratogens. ©Encyclopedia of Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - – Vol.VII - Effects of Aflatoxins Contaminating Food on Human Health - Magda Carvajal and Pável Castillo The impact of AF contamination on crops is estimated in hundreds of millions dollars.
    [Show full text]
  • Desmodus Rotundus) Blood Feeding
    toxins Article Vampire Venom: Vasodilatory Mechanisms of Vampire Bat (Desmodus rotundus) Blood Feeding Rahini Kakumanu 1, Wayne C. Hodgson 1, Ravina Ravi 1, Alejandro Alagon 2, Richard J. Harris 3 , Andreas Brust 4, Paul F. Alewood 4, Barbara K. Kemp-Harper 1,† and Bryan G. Fry 3,*,† 1 Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria 3800, Australia; [email protected] (R.K.); [email protected] (W.C.H.); [email protected] (R.R.); [email protected] (B.K.K.-H.) 2 Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; [email protected] 3 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4067, Australia; [email protected] 4 Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (A.B.); [email protected] (P.F.A.) * Correspondence: [email protected] † Joint senior authors. Received: 20 November 2018; Accepted: 2 January 2019; Published: 8 January 2019 Abstract: Animals that specialise in blood feeding have particular challenges in obtaining their meal, whereby they impair blood hemostasis by promoting anticoagulation and vasodilation in order to facilitate feeding. These convergent selection pressures have been studied in a number of lineages, ranging from fleas to leeches. However, the vampire bat (Desmondus rotundus) is unstudied in regards to potential vasodilatory mechanisms of their feeding secretions (which are a type of venom). This is despite the intense investigations of their anticoagulant properties which have demonstrated that D.
    [Show full text]
  • Role of the Inflammasome in Defense Against Venoms
    Role of the inflammasome in defense against venoms Noah W. Palm and Ruslan Medzhitov1 Department of Immunobiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520 Contributed by Ruslan Medzhitov, December 11, 2012 (sent for review November 14, 2012) Venoms consist of a complex mixture of toxic components that are Large, multiprotein complexes responsible for the activation used by a variety of animal species for defense and predation. of caspase-1, termed inflammasomes, are activated in response Envenomation of mammalian species leads to an acute inflamma- to various infectious and noninfectious stimuli (14). The activa- tory response and can lead to the development of IgE-dependent tion of inflammasomes culminates in the autocatalytic cleavage venom allergy. However, the mechanisms by which the innate and activation of the proenzyme caspase-1 and the subsequent – immune system detects envenomation and initiates inflammatory caspase-1 dependent cleavage and noncanonical (endoplasmic- – fl and allergic responses to venoms remain largely unknown. Here reticulum and Golgi-independent) secretion of the proin am- matory cytokines IL-1β and IL-18, which lack leader sequences. we show that bee venom is detected by the NOD-like receptor fl family, pyrin domain-containing 3 inflammasome and can trigger In addition, activation of caspase-1 leads to a proin ammatory cell death termed pyroptosis. The NLRP3 inflammasome con- activation of caspase-1 and the subsequent processing and uncon- “ ” ventional secretion of the leaderless proinflammatory cytokine sists of the sensor protein NLRP3, the adaptor apoptosis-as- sociated speck-like protein (ASC) and caspase-1. Damage to IL-1β in macrophages.
    [Show full text]
  • Comparative Acute and Combinative Toxicity of Aflatoxin B1 and T-2 Toxin
    JOURNAL OF APPLIED TOXICOLOGY TOXICITY OF AFLATOXIN B1 AND T-2 TOXIN 139 J. Appl. Toxicol. 2006; 26: 139–147 Published online 17 October 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jat.1117 Comparative acute and combinative toxicity of aflatoxin B1 and T-2 toxin in animals and immortalized human cell lines Christopher McKean, Lili Tang, Madhavi Billam, Meng Tang, Christopher W. Theodorakis, Ronald J. Kendall and Jia-Sheng Wang* The Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Box 41163, Lubbock TX 79409-1163, USA Received 27 September 2004; Revised 14 June 2005; Accepted 8 August 2005 ABSTRACT: Aflatoxin B1 (AFB1) and T-2 toxin (T-2) are important food-borne mycotoxins that have been implicated in human health and as potential biochemical weapons threats. In this study the acute and combinative toxicity of AFB1 and T-2 were tested in F-344 rats, mosquitofish (Gambusia affinis), immortalized human hepatoma cells (HepG2) and human bronchial epithelial cells (BEAS-2B). Preliminary experiments were conducted in order to assess the acute toxicity and to obtain LD50, LC50 and IC50 values for individual toxins in each model, respectively. This was followed by testing combinations of AFB1 and T-2 to obtain LD50, LC50 and IC50 values for the combination in each model. All models demonstrated a significant dose response in the observed parameters to treatment. The potency of the mixture was gauged through the determination of the interaction index metric. The results of this study demonstrate that these two toxins interacted to produce alterations in the toxic responses generally classifiable as additive; however, a synergistic interaction was noted in the case of BEAS-2B.
    [Show full text]
  • Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
    17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs.
    [Show full text]
  • A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance
    Chapter 21 A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance Juan C. Santos , Rebecca D. Tarvin , and Lauren A. O’Connell 21.1 Introduction Chemical defense has evolved multiple times in nearly every major group of life, from snakes and insects to bacteria and plants (Mebs 2002 ). However, among land vertebrates, chemical defenses are restricted to a few monophyletic groups (i.e., clades). Most of these are amphibians and snakes, but a few rare origins (e.g., Pitohui birds) have stimulated research on acquired chemical defenses (Dumbacher et al. 1992 ). Selective pressures that lead to defense are usually associated with an organ- ism’s limited ability to escape predation or conspicuous behaviors and phenotypes that increase detectability by predators (e.g., diurnality or mating calls) (Speed and Ruxton 2005 ). Defended organisms frequently evolve warning signals to advertise their defense, a phenomenon known as aposematism (Mappes et al. 2005 ). Warning signals such as conspicuous coloration unambiguously inform predators that there will be a substantial cost if they proceed with attack or consumption of the defended prey (Mappes et al. 2005 ). However, aposematism is likely more complex than the simple pairing of signal and defense, encompassing a series of traits (i.e., the apose- matic syndrome) that alter morphology, physiology, and behavior (Mappes and J. C. Santos (*) Department of Zoology, Biodiversity Research Centre , University of British Columbia , #4200-6270 University Blvd , Vancouver , BC , Canada , V6T 1Z4 e-mail: [email protected] R. D. Tarvin University of Texas at Austin , 2415 Speedway Stop C0990 , Austin , TX 78712 , USA e-mail: [email protected] L.
    [Show full text]
  • Botulinum Toxin Ricin Toxin Staph Enterotoxin B
    Botulinum Toxin Ricin Toxin Staph Enterotoxin B Source Source Source Clostridium botulinum, a large gram- Ricinus communis . seeds commonly called .Staphylococcus aureus, a gram-positive cocci positive, spore-forming, anaerobic castor beans bacillus Characteristics Characteristics .Appears as grape-like clusters on Characteristics .Toxin can be disseminated in the form of a Gram stain or as small off-white colonies .Grows anaerobically on Blood Agar and liquid, powder or mist on Blood Agar egg yolk plates .Toxin-producing and non-toxigenic strains Pathogenesis of S. aureus will appear morphologically Pathogenesis .A-chain inactivates ribosomes, identical interrupting protein synthesis .Toxin enters nerve terminals and blocks Pathogenesis release of acetylcholine, blocking .B-chain binds to carbohydrate receptors .Staphylococcus Enterotoxin B (SEB) is a neuro-transmission and resulting in on the cell surface and allows toxin superantigen. Toxin binds to human class muscle paralysis complex to enter cell II MHC molecules causing cytokine Toxicity release and system-wide inflammation Toxicity .Highly toxic by inhalation, ingestion Toxicity .Most lethal of all toxic natural substances and injection .Toxic by inhalation or ingestion .Groups A, B, E (rarely F) cause illness in .Less toxic by ingestion due to digestive humans activity and poor absorption Symptoms .Low dermal toxicity .4-10 h post-ingestion, 3-12 h post-inhalation Symptoms .Flu-like symptoms, fever, chills, .24-36 h (up to 3 d for wound botulism) Symptoms headache, myalgia .Progressive skeletal muscle weakness .18-24 h post exposure .Nausea, vomiting, and diarrhea .Symmetrical descending flaccid paralysis .Fever, cough, chest tightness, dyspnea, .Nonproductive cough, chest pain, .Can be confused with stroke, Guillain- cyanosis, gastroenteritis and necrosis; and dyspnea Barre syndrome or myasthenia gravis death in ~72 h .SEB can cause toxic shock syndrome + + + Gram stain Lipase on Ricin plant Castor beans S.
    [Show full text]
  • Diagnosis of Clostridium Perfringens
    Received: January 12, 2009 J Venom Anim Toxins incl Trop Dis. Accepted: March 25, 2009 V.15, n.3, p.491-497, 2009. Abstract published online: March 31, 2009 Original paper. Full paper published online: August 31, 2009 ISSN 1678-9199. GENOTYPING OF Clostridium perfringens ASSOCIATED WITH SUDDEN DEATH IN CATTLE Miyashiro S (1), Baldassi L (1), Nassar AFC (1) (1) Animal Health Research and Development Center, Biological Institute, São Paulo, São Paulo State, Brazil. ABSTRACT: Toxigenic types of Clostridium perfringens are significant causative agents of enteric disease in domestic animals, although type E is presumably rare, appearing as an uncommon cause of enterotoxemia of lambs, calves and rabbits. We report herein the typing of 23 C. perfringens strains, by the polymerase chain reaction (PCR) technique, isolated from small intestine samples of bovines that have died suddenly, after manifesting or not enteric or neurological disorders. Two strains (8.7%) were identified as type E, two (8.7%) as type D and the remainder as type A (82.6%). Commercial toxoids available in Brazil have no label claims for efficacy against type E-associated enteritis; however, the present study shows the occurrence of this infection. Furthermore, there are no recent reports on Clostridium perfringens typing in the country. KEY WORDS: Clostridium perfringens, iota toxin, sudden death, PCR, cattle. CONFLICTS OF INTEREST: There is no conflict. CORRESPONDENCE TO: SIMONE MIYASHIRO, Instituto Biológico, Av. Conselheiro Rodrigues Alves, 1252, Vila Mariana, São Paulo, SP, 04014-002, Brasil. Phone: +55 11 5087 1721. Fax: +55 11 5087 1721. Email: [email protected]. Miyashiro S et al.
    [Show full text]