A Proxy Server-Network for Real-Time Computer Games

Total Page:16

File Type:pdf, Size:1020Kb

A Proxy Server-Network for Real-Time Computer Games A Proxy Server-Network for Real-Time Computer Games Jens M¨uller1,StefanFischer2,SergeiGorlatch1, and Martin Mauve3 1 Westf¨alische Wilhelms-Universit¨at M¨unster, Germany 2 Technische Universit¨at Braunschweig, Germany 3 Heinrich-Heine-Universit¨at, D¨usseldorf, Germany Abstract. Computer games played over the Internet have recently be- come an important class of distributed applications. In this paper we present a novel proxy server-network topology aiming at improved scala- bility of multiplayer games and low latency in client-server data transmis- sion. We present a mechanism to efficiently synchronize the distributed state of a game based on the concept of eventual consistency. We analyse the benefits of our approach compared to commonly used client-server and peer-to-peer topologies, and present first experimental results. 1 Introduction Computer games played over a network are categorized in the three main genres: First Person Shooter Games (FPS), Real-time Strategy Games (RTS) and Mas- sive Multiplayer Online Roleplaying Games (MMORPG). For MMORPG, there exist several advanced networking topologies, which can support a high number of participating clients [1]. In contrast, the basic concepts of network commu- nication for FPS and RTS games have not been altered for years. Commonly used architectures like client-server and peer-to-peer do not provide the required scalability for massive-multiplayer sessions. Although other communication ar- chitectures like peer-to-peer server-networks or hierarchical server-networks ex- ist, their efficient usage for FPS and RTS games is still not well understood (an overview can be found in [2]). In this paper, we present our work on a Proxy Server-Network for Real-time Computer Games. Our main goal is to improve network scalability for FPS and RTS games in comparison to traditional topologies, thus allowing games with higher numbers of players. A further objective is to enhance responsiveness of massive-multiplayer, Internet based games by providing low communication la- tency between clients and servers. The paper is organized as follows: In Sect. 2 we introduce our architecture and propose a concept for an efficient synchro- nisation of the distributed game state. We describe our implementation of the architecture as a C++ API and present experimental results on its scalability in Sect. 3. Section 4 compares our approach with related work and concludes the paper. M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 606–613, 2004. c Springer-Verlag Berlin Heidelberg 2004 A Proxy Server-Network for Real-Time Computer Games 607 2 Architecture Commonly used communication architectures like client-server or peer-to-peer topologies provide a variety of positive aspects and can be implemented quite easily, which leads to their high acceptance for computer games. However, there are several disadvantages in both concepts, resulting in poor quality of service and inhibiting novel game designs with a higher number of participating users. Client-server and peer-to-peer topologies do not scale well when the number of users increases. Additionally, the server in a client-server setup forms a single point of failure for the whole session. While the peer-to-peer approach eliminates the problem of a single point of failure, it allows a hacked client to cheat, since submitted game updates are not filtered by a server instance and hidden information can be made visible to the player [3]. 2.1 The Proxy Server-Network The proposed proxy server architecture, which is derived from a peer-to-peer server-network [2], is shown in Fig. 1. The initial idea was sketched in [4]. clients clients [...] [...] proxy server proxy server ISP 1 client proxyserver communication inter proxyserver communication [...] [...] clientsproxy server proxy server clients ISP 2 ISP 3 Fig. 1. Example session using the proxy server architecture. The key idea of our architecture is the use of several interconnected proxy servers for a single game session. Each proxy server has a full view of the global game state, allowing it to serve arbitrary clients. Each client communicates with a single proxy to send user actions and receive updates of the game state. Proxy servers process user actions and forward them to other proxies using multicast (IP or application level) for synchronizing the distributed game state. For the sake of low latency in Internet based sessions, proxy servers should be located at different Internet Service Providers (ISP), such that each client connects to a proxy at its ISP. In our current implementation, the setup of 608 J. M¨uller et al. servers is done manually, but future work includes a dynamic setup of proxies respecting current user demand. MMORPG commonly use an approach orthogonal to ours: Instead of repli- cating the game world, they partition it among servers, which forces clients to change the server when the user moves into another region. While this approach works well for the relatively slow game flow in MMORPG, it cannot be applied to fast paced games like FPS and RTS, in which recurrent pauses resulting from server changes are annoying for users. Since each proxy has full view of the game state, our proxy server-network avoids reconnects during a session. As we show in Sect. 3.1, the described proxy network scales better with an increasing number of clients than traditional topologies. 2.2 Managing the Distributed Game State Since the game state is replicated at the proxy servers, our architecture requires mechanisms to provide adequate consistency of the replicated data. There is a classical trade off between scalability, responsiveness, and con- sistency in distributed simulations in general. Implementing strong consistency models like causal or even sequential consistency [5] would increase the amount of inter-proxy communication: Proxies would have to order changes of the game state using Lamport timestamps or physical clock synchronisation. This would delay the transmission of acknowledgements of user actions to clients, thereby reducing the responsiveness of the game. As reported in [6], a scalable distributed system with real-time performance is only possible if not all participating pro- cesses share the same view on common data at one time. Therefore, we propose to use the concept of eventual consistency [5] for the game state. To implement eventual consistency, only a single process is allowed to alter specific parts of replicated data. Changes have to be propagated to other processes, ensuring consistency of the replicated state as soon as the update notification arrives. (5) remote proxy updates (5) remote proxy updates local game state local game state and checks interactions and checks interactions (6) proxies submit results of interaction evaluation [...] (4) proxy notifies [...] other servers (7) proxy informs (2) proxy validates (7) proxy informs affected clients user input and affected clients updates local game state on success (1) client submits (3) proxy sends user action acknowledgement Fig. 2. Acknowledging and forwarding a single user action. A Proxy Server-Network for Real-Time Computer Games 609 The main steps in our concept of transmitting and processing a single user action in the proxy server-network are depicted in Fig. 2. User actions trans- ferred from clients (1) are categorized in movements and interactions.Incaseof movement commands, the server has to check if the user input is legal to prevent cheating before changing the state (2), and to inform other proxies about up- dated position values (4), which in turn update the local copies accordingly (5). In this way eventual consistency for the changed part of the game state is guar- anteed and the clients receive acknowledgments for movement commands in a relatively short time (3). In case of interactions, notified proxies additionally have to check whether local clients are affected. If so, the responsible proxy up- dates the game state of its local client, and informs other servers in turn (6). For all state updates received from other proxy servers, each proxy evaluates which local clients are affected and informs them (7). In our architecture, general parts of the game state that are not associated with a specific client are assigned to single proxy servers for maintenance, which ensures eventual consistency for these parts of the game state as well. Such data contain manipulable parts of the gameworld like collectible items or avatars not controlled by the users (Non-Player Characters). To avoid a single point of failure, applications have to implement a proper election method to reassign responsibility to another proxy in case of a server failure. For data representing states of clients, a reassignment of responsibility is not required: If a proxy process fails, clients connected to it will loose connection to the session anyway, while for all other processes the game will continue to be playable. The presented concept for managing the distributed state allows an efficient synchronisation of the game state in combination with fast acknowledgment of user actions. However, due to the use of eventual consistency, execution of commands can occur in a different order than their initation by the users. In the following, we discuss the impact of this fact on the playing conditions. 2.3 Discussion of Game Correctness A computer game provides equal game opportunities for all users, if the order of processed state updates is the same as the order of their initiation by the users. Additionally, in continuous simulations like real-time games, the point in time at which actions are processed has to be considered, too. Let us consider an example interaction between two clients, c1 and c2, in a real-time game: The user at c1 issue an action affecting c2 (e. g. shooting at the avatar managed by c2 with an instant-hit weapon), while the user at c2 issues a movement command some time later which would nevertheless prevent his avatar from being affected if processed before the action of the user at c1.
Recommended publications
  • Poster: Introducing Massbrowser: a Censorship Circumvention System Run by the Masses
    Poster: Introducing MassBrowser: A Censorship Circumvention System Run by the Masses Milad Nasr∗, Anonymous∗, and Amir Houmansadr University of Massachusetts Amherst fmilad,[email protected] ∗Equal contribution Abstract—We will present a new censorship circumvention sys- side the censorship regions, which relay the Internet traffic tem, currently being developed in our group. The new system of the censored users. This includes systems like Tor, VPNs, is called MassBrowser, and combines several techniques from Psiphon, etc. Unfortunately, such circumvention systems are state-of-the-art censorship studies to design a hard-to-block, easily blocked by the censors by enumerating their limited practical censorship circumvention system. MassBrowser is a set of proxy server IP addresses [14]. (2) Costly to operate: one-hop proxy system where the proxies are volunteer Internet To resist proxy blocking by the censors, recent circumven- users in the free world. The power of MassBrowser comes from tion systems have started to deploy the proxies on shared-IP the large number of volunteer proxies who frequently change platforms such as CDNs, App Engines, and Cloud Storage, their IP addresses as the volunteer users move to different a technique broadly referred to as domain fronting [3]. networks. To get a large number of volunteer proxies, we This mechanism, however, is prohibitively expensive [11] provide the volunteers the control over how their computers to operate for large scales of users. (3) Poor QoS: Proxy- are used by the censored users. Particularly, the volunteer based circumvention systems like Tor and it’s variants suffer users can decide what websites they will proxy for censored from low quality of service (e.g., high latencies and low users, and how much bandwidth they will allocate.
    [Show full text]
  • In Computer Networks, A
    Practical No.1 Date:- Title:- Installation of Proxy-Server Windows Server 2003 What is proxy server? In computer networks, a proxy server is a server (a computer system or an application program) that acts as an intermediary for requests from clients seeking resources from other servers. A client connects to the proxy server, requesting some service, such as a file, connection, web page, or other resource, available from a different server. The proxy server evaluates the request according to its filtering rules. For example, it may filter traffic by IP address or protocol. If the request is validated by the filter, the proxy provides the resource by connecting to the relevant server and requesting the service on behalf of the client. A proxy server may optionally alter the client's request or the server's response, and sometimes it may serve the request wit hout contacting the specified server. In this case, it 'caches' responses from the remote server, and returns subsequent requests for the same content directly . Most proxies are a web proxy, allowing access to content on the World Wide Web. A proxy server has a large variety of potential purposes, including: To keep machines behind it anonymous (mainly for security).[1] To speed up access to resources (using caching). Web proxies are commonly used to cache web pages from a web server.[2] To apply access policy to network services or content, e.g. to block undesired sites. To log / audit usage, i.e. to provide company employee Internet usage reporting. To bypass security/ parental controls. To scan transmitted content for malware before delivery.
    [Show full text]
  • Threat Modeling and Circumvention of Internet Censorship by David Fifield
    Threat modeling and circumvention of Internet censorship By David Fifield A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor J.D. Tygar, Chair Professor Deirdre Mulligan Professor Vern Paxson Fall 2017 1 Abstract Threat modeling and circumvention of Internet censorship by David Fifield Doctor of Philosophy in Computer Science University of California, Berkeley Professor J.D. Tygar, Chair Research on Internet censorship is hampered by poor models of censor behavior. Censor models guide the development of circumvention systems, so it is important to get them right. A censor model should be understood not just as a set of capabilities|such as the ability to monitor network traffic—but as a set of priorities constrained by resource limitations. My research addresses the twin themes of modeling and circumvention. With a grounding in empirical research, I build up an abstract model of the circumvention problem and examine how to adapt it to concrete censorship challenges. I describe the results of experiments on censors that probe their strengths and weaknesses; specifically, on the subject of active probing to discover proxy servers, and on delays in their reaction to changes in circumvention. I present two circumvention designs: domain fronting, which derives its resistance to blocking from the censor's reluctance to block other useful services; and Snowflake, based on quickly changing peer-to-peer proxy servers. I hope to change the perception that the circumvention problem is a cat-and-mouse game that affords only incremental and temporary advancements.
    [Show full text]
  • How to Download Torrent Anonymously How to Download Torrent Anonymously
    how to download torrent anonymously How to download torrent anonymously. Completing the CAPTCHA proves you are a human and gives you temporary access to the web property. What can I do to prevent this in the future? If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store. Cloudflare Ray ID: 66b6c3aaaba884c8 • Your IP : 188.246.226.140 • Performance & security by Cloudflare. Download Torrents Anonymously: 6 Safe And Easy Ways. Who doesn’t want to know how to download torrents anonymously? The thing is, in order to download torrents anonymously you don’t need to have a lot of technical know-how. All you need to download torrents anonymously is some grit and a computer with an internet connection. The technology world never remains the same. In fact, new development and discoveries come to the surface of this industry every day. They also come into the attention of online users every year. Moreover, this allows us to do much more than we could do in the past, in faster and easier ways. A highly relevant aspect to mention at this stage is that: Now we can also download torrents anonymously from best torrent sites.
    [Show full text]
  • World-Wide Web Proxies
    World-Wide Web Proxies Ari Luotonen, CERN Kevin Altis, Intel April 1994 Abstract 1.0 Introduction A WWW proxy server, proxy for short, provides access to The primary use of proxies is to allow access to the Web the Web for people on closed subnets who can only access from within a firewall (Fig. 1). A proxy is a special HTTP the Internet through a firewall machine. The hypertext [HTTP] server that typically runs on a firewall machine. server developed at CERN, cern_httpd, is capable of run- The proxy waits for a request from inside the firewall, for- ning as a proxy, providing seamless external access to wards the request to the remote server outside the firewall, HTTP, Gopher, WAIS and FTP. reads the response and then sends it back to the client. cern_httpd has had gateway features for a long time, but In the usual case, the same proxy is used by all the clients only this spring they were extended to support all the within a given subnet. This makes it possible for the proxy methods in the HTTP protocol used by WWW clients. Cli- to do efficient caching of documents that are requested by ents don’t lose any functionality by going through a proxy, a number of clients. except special processing they may have done for non- native Web protocols such as Gopher and FTP. The ability to cache documents also makes proxies attrac- tive to those not inside a firewall. Setting up a proxy server A brand new feature is caching performed by the proxy, is easy, and the most popular Web client programs already resulting in shorter response times after the first document have proxy support built in.
    [Show full text]
  • Technical and Legal Overview of the Tor Anonymity Network
    Emin Çalışkan, Tomáš Minárik, Anna-Maria Osula Technical and Legal Overview of the Tor Anonymity Network Tallinn 2015 This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre). It does not necessarily reflect the policy or the opinion of the Centre or NATO. The Centre may not be held responsible for any loss or harm arising from the use of information contained in this publication and is not responsible for the content of the external sources, including external websites referenced in this publication. Digital or hard copies of this publication may be produced for internal use within NATO and for personal or educational use when for non- profit and non-commercial purpose, provided that copies bear a full citation. www.ccdcoe.org [email protected] 1 Technical and Legal Overview of the Tor Anonymity Network 1. Introduction .................................................................................................................................... 3 2. Tor and Internet Filtering Circumvention ....................................................................................... 4 2.1. Technical Methods .................................................................................................................. 4 2.1.1. Proxy ................................................................................................................................ 4 2.1.2. Tunnelling/Virtual Private Networks ............................................................................... 5
    [Show full text]
  • The Measured Access Characteristics of World-Wide-Web Client Proxy Caches
    The following paper was originally published in the Proceedings of the USENIX Symposium on Internet Technologies and Systems Monterey, California, December 1997 The Measured Access Characteristics of World-Wide-Web Client Proxy Caches Bradley M. Duska, David Marwood, and Michael J. Feeley University of British Columbia For more information about USENIX Association contact: 1. Phone: 510 528-8649 2. FAX: 510 548-5738 3. Email: [email protected] 4. WWW URL:http://www.usenix.org/ The Measured Access Characteristics of World-Wide-Web Client Proxy Caches Bradley M. Duska, David Marwood, and Michael J. Feeley Department of Computer Science University of British Columbia g fbduska,marwood,feeley @cs.ubc.ca Abstract three fronts. The ®rst is to scale Web servers to handle the increasing demands being placed on them. The sec- The growing popularity of the World Wide Web is plac- ond is to ensure that the Internet itself will scale by con- ing tremendous demands on the Internet. A key strategy tinuing to increase its capacity and by deploying new net- for scaling the Internet to meet these increasing demands work technologies. The third is to focus on the clients: is to cache data near clients and thus improve access la- Web browsers and a hierarchy of proxy servers to which tency and reduce network and server load. Unfortunately, they may be connected. research in this area has been hampered by a poor un- Client-side solutions such as caching and prefetching derstanding of the locality and sharing characteristics of are attractive because they improve the performance of Web-client accesses.
    [Show full text]
  • What Is SOCKS?
    Version 2.0 What is SOCKS? An explanation of the SOCKS protocol and application proxy gateway systems B. Scott Wilson, CISSP IBM Global Services, Network Services What is SOCKS? ! SOCKS is a generic proxy protocol for TCP/IP-based networking applications. ! The SOCKS protocol provides a flexible framework for developing secure communications by easily integrating other security technologies. 2 How does it Work? ! When an application client needs to connect to an application server, the client machine connects to a SOCKS proxy server. The proxy server connects to the application server on behalf of the client, and relays data between the client and the application server. ! For the application server, the proxy server is the client. 3 The SOCKS Protocol ! SOCKS version 5 is an IETF approved standard protocol implementation (RFC 1928). ! SOCKS includes two components, the SOCKS server and the SOCKS client. The SOCKS server is implemented at the application layer, while the SOCKS client is implemented between the application and transport layers (see next slide). ! The basic purpose of the protocol is to enable hosts on one side of a SOCKS server to gain access to hosts on the other side of a SOCKS Server, without requiring direct “IP-reachability”. 4 SOCKS and the OSI Layer Model 5 Functions of SOCKS ! The SOCKS protocol performs four functions: " Making connection requests " Setting up proxy circuits " Relaying application data " Performing user authentication (optional) 6 Features of SOCKS ! Transparent network access across multiple proxy servers ! Easy deployment of authentication and encryption methods ! Rapid deployment of new network applications ! Simple network security policy management 7 Benefits of SOCKS ! A single communication protocol authenticates users and establishes the communication channel ! SOCKS is application independent ! Can be used with either UDP or TCP based protocols; even supports redirection of ICMP! ! Bi-directional support and intrinsic NAT, for added security and anti-spoofing.
    [Show full text]
  • Hypertext Transfer Protocol
    Hypertext Transfer Protocol Ing. Pierluigi Gallo HTTP Hypertext Transfer Protocol used in the WWW protocol used for communication between web browsers and web servers client-server paradigm TCP port 80 RFC 1945 Ing. Pierluigi Gallo Introduction to HTTP 80% of Internet flows are HTTP connections Early protocol is HTTP 0.9 read only Today we use HTTP 1.0 read, input, delete, ... New version: HTTP 1.1 performance optimizations Ing. Pierluigi Gallo HTTP Overview Client (browser) sends HTTP request to server Request specifies affected URL Request specifies desired operation Server performs operation on URL Server sends response Request and reply headers are in pure text Ing. Pierluigi Gallo Static Content and HTML Most static web content is written in HTML HTML allows Text formatting commands Embedded objects Links to other objects Server need not understand or interpret HTML Ing. Pierluigi Gallo URI,URN,URL RFC 3305 Uniform Resource Identifier Identifies a resource Uniform Resource Name The name of the resource with in a namespace like a person’s name Uniform Resource Locator How to find the resource, a URI that says how to find the resource like a person street address URI concept is more general than its use in web pages (XML, …) Ing. Pierluigi Gallo HTTP - URLs URL Uniform Resource Locator protocol (http, ftp, news) host name (name.domain name) port (80, 8080, …) directory path to the resource resource name absolute relative http://www.tti.unipa.it/~pg/pg/Teaching.html http://xxx.myplace.com:80/cgi-bin/t.exe Ing. Pierluigi Gallo URI examples http://example.org/absolute/URI/with/absolute/ path/to/resource.txt ftp://example.org/resource.txt urn:issn:1535-3613 /relative/URI/with/absolute/path/to/resource.txt relative/path/to/resource.txt ../../../resource.txt ./resource.txt#frag01 Ing.
    [Show full text]
  • Firewall and Proxy Server HOWTO Firewall and Proxy Server HOWTO
    Firewall and Proxy Server HOWTO Firewall and Proxy Server HOWTO Table of Contents Firewall and Proxy Server HOWTO................................................................................................................1 Mark Grennan, mark@grennan.com.......................................................................................................1 1.Introduction...........................................................................................................................................1 2.Understanding Firewalls.......................................................................................................................1 3.Firewall Architecture ...........................................................................................................................1 4.Setting up the Linux Filtering Firewall ................................................................................................1 5.Software requirements..........................................................................................................................1 6.Preparing the Linux system..................................................................................................................2 7.IP filtering setup (IPFWADM).............................................................................................................2 8.IP filtering setup (IPCHAINS)..............................................................................................................2 9.Making it easy−er.................................................................................................................................2
    [Show full text]
  • How to Download with Torrent Hide Ip How to Download Torrents Anonymously
    how to download with torrent hide ip How to Download Torrents Anonymously. The world of torrents and downloading can come with a backlash. There are many agencies and enforcement groups that seek to take down torrent websites and find out information on those who are using and contributing to the torrent streams. While torrents are not illegal, people who benefit from their downloads do not want to have unnecessary hassle and stress. Due to this increase in anti-torrent activity, many users are looking at ways to hide their identity and personal information from such agencies. New programs, apps, and technologies are being created constantly to disguise your true identity and enable torrents to be downloaded anonymously. Use a VPN (Virtual Private Network) A VPN is the perfect and ideal way to protect your identity and hide your actual location. This is the most effective way to download torrents anonymously and is widely used by members of the bit Torrent community. A VPN will basically divert your internet traffic through a different server and hide your IP address from the public. Usenet. Considered one of the most private ways to share files and a service that has been available for many years (The technology has been available for 30 years!), Usenet is tried and tested. The only drawback is that there are no free options available so you will need some form of paid subscription. BTGuard. This is one of the many proxy services available that will hide your IP address from the public. This service works on all major devices (Mac, Linux, Windows), and also includes encryption tunnel software for added security.
    [Show full text]
  • Make Deluge Check for Torrent Before Downloading Force Re-Check Torrents
    make deluge check for torrent before downloading Force re-check torrents. “Force re-check” option permits you to check torrents integrity. It means that the torrent content will be checked for missing files and pieces. Any incomplete file or piece in the torrent content will be removed during the re-checking process, and missing ones will start to download as soon as re-check is done. During the re-checking process downloading, uploading and seeding will stop. As soon as re-check is done, downloading, uploading and seeding will resume. Usually, forced re-check is performed automatically by Folx when it is needed (for example, when you relocate your downloads; or when the download task was stopped and then restarted). But if you want, you may enable “Force re-check” option of torrents manually. “Force re-check” option is available either from Main menu –> Tasks –> Force Re-Check, or from Status window –> Tasks –> Force Re- Check. Anonymous VPN & Proxy Blog. Adding an Anonymous Torrent Proxy to your torrent client is a great way to ensure all your torrent traffic is secure and private. Even if you use a VPN, adding a second layer of security through a proxy is the only way to protect against accidental disconnects from the VPN. Most all torrent clients these days, including utorrent/bittorrent, Vuze, Deluge, support the use of Torrent Proxies. So, you just entered your proxy settings into your torrent software’s preferences. How can you check if your torrent traffic is really anonymous? TorGuard provides a FREE, anonymous tool to check your current torrent IP address.
    [Show full text]