Activities, and Body Mass Index and Polygenic Variations, Hemolytic

Total Page:16

File Type:pdf, Size:1020Kb

Activities, and Body Mass Index and Polygenic Variations, Hemolytic Diversity in Intrinsic Strengths of the Human Complement System: Serum C4 Protein Concentrations Correlate with C4 Gene Size and Polygenic Variations, Hemolytic This information is current as Activities, and Body Mass Index of September 23, 2021. Yan Yang, Erwin K. Chung, Bi Zhou, Carol A. Blanchong, C. Yung Yu, George Füst, Margit Kovács, Ágnes Vatay, Csaba Szalai, István Karádi and Lilian Varga J Immunol 2003; 171:2734-2745; ; Downloaded from doi: 10.4049/jimmunol.171.5.2734 http://www.jimmunol.org/content/171/5/2734 http://www.jimmunol.org/ References This article cites 65 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/171/5/2734.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Diversity in Intrinsic Strengths of the Human Complement System: Serum C4 Protein Concentrations Correlate with C4 Gene Size and Polygenic Variations, Hemolytic Activities, and Body Mass Index1 Yan Yang,*†‡ Erwin K. Chung,*†‡ Bi Zhou,* Carol A. Blanchong,*‡ C. Yung Yu,2*†‡ George Fu¨st,2§ Margit Kova´cs,§ A´ gnes Vatay,§ Csaba Szalai,¶ Istva´n Kara´di,§ and Lilian Varga§ Among the genes and proteins of the human immune system, complement component C4 is extraordinary in its frequent germline variation in the size and number of genes. Definitive genotypic and phenotypic analyses were performed on a central European Downloaded from population to determine the C4 polygenic and gene size variations and their relationships with serum C4A and C4B protein concentrations and hemolytic activities. In a study population of 128 healthy subjects, the number of C4 genes present in a diploid genome varied between two to five, and 77.4% of the C4 genes belonged to the long form that contains the endogenous retrovirus HERV-K(C4). Intriguingly, higher C4 serum protein levels and higher C4 hemolytic activities were often detected in subjects with short C4 genes than those with long genes only, suggesting a negative epistatic effect of HERV-K(C4) on the expression of C4 proteins. Also, the body mass index appeared to affect the C4 serum levels, particularly in the individuals with medium or high http://www.jimmunol.org/ C4 gene dosages, a phenomenon that was dissimilar in several aspects from the established correlation between body mass index and serum C3. As expected, there were strong, positive correlations between total C4 gene dosage and serum C4 protein con- centrations, and between serum C4 protein concentrations and C4 hemolytic activities. There were also good correlations between the number of long genes with serum levels of C4A, and the number of short genes with serum levels of C4B. Thus, the polygenic and gene size variations of C4A and C4B contribute to the quantitative traits of C4 with a wide range of serum protein levels and hemolytic activities, and consequently the power of the innate defense system. The Journal of Immunology, 2003, 171: 2734–2745. iversities in immune functions are mainly achieved by nomenon has been observed over a decade ago (5–14), the molec- by guest on September 23, 2021 nucleotide polymorphisms/mutations and somatic re- ular genetic basis for the qualitative and quantitative variations of D combinations of gene segments (1, 2). Human comple- human complement C4 was often accounted for inaccurately. Until ment component C4 represents a new paradigm of complex, inborn recently, the sophistication of human C4 genetics has not been immune diversity (3). Phenotypically, there are acidic C4A and fully appreciated. A two-locus, C4A-C4B model with null alleles basic C4B proteins with multiple polymorphic variants in each of either locus was used to explain the great variation in the levels class (4). The plasma or serum protein levels of total C4 vary of C4A and C4B proteins in a population (15, 16). There are ac- between 100 and 1000 mg/L among different individuals, as do the tually a frequent, dichotomous gene size variation and polygenic relative quantities of C4A and C4B proteins. Although this phe- and modular duplications of C4A and C4B together with their flanking genes RP1 or RP2, CYP21A or CYP21B, and TNXA or TNXB in the MHC (Fig. 1A). Existing at the germline levels and *Center for Molecular and Human Genetics, Columbus Children’s Research Institute, †Department of Molecular Virology, Immunology, and Medical Genetics, and ‡De- inherent to different individuals, there are monomodular, bimodu- partment of Pediatrics, Ohio State University, Columbus, OH 43205; §Third Depart- lar, trimodular, or quadrimodular structures of discrete segments in ment of Internal Medicine, Semmelweis Medical University, Budapest, Hungary; and ¶Section of Molecular Immunology, Hungarian Academy of Sciences, and the MHC containing one, two, three, or four RP-C4-CYP21-TNX Heim Pa´l Pediatric Hospital, Budapest, Hungary (RCCX)3 modules (17–19). Each C4 gene may code for C4A or Received for publication February 25, 2003. Accepted for publication July 2, 2003. C4B. Each C4A or C4B gene may be 21 kb (long) or 14.6 kb The costs of publication of this article were defrayed in part by the payment of page (short) in size (20). The long C4 gene contains a 6.36-kb endog- charges. This article must therefore be hereby marked advertisement in accordance enous retrovirus HERV-K(C4) in its intron 9 (21, 22). Recently, with 18 U.S.C. Section 1734 solely to indicate this fact. we showed that the bimodular RCCX haplotypes constitute 1 This work in the United States was supported by the National Institute of Arthritis slightly more than two-thirds of the Caucasian population in the and Musculoskeletal and Skin Diseases Grants R01 43969 and 1R01 AR050078, the National Institute of Diabetes and Digestive and Kidney Diseases Grant P01 midwestern United States, while the frequencies of monomodular DK55546, an institutional grant from the Columbus Children’s Research Institute and trimodular RCCX haplotypes were 0.17 and 0.14, respectively (297401), and Pittsburgh Supercomputing Center through National Institutes of (18). Quadrimodular RCCX haplotypes with four C4 genes in a Health Center for Research Resources Cooperative Agreement Grant 1P41 RR06009 (to C.Y.Y.); and in Hungary this work was supported by research grants from the Hungarian Academy of Sciences (2000-107 3,2) and Hungarian National Research Fund (T032661) (to G.F.). 3 Abbreviations used in this paper: RCCX, four-gene module in human MHC with 2 Address correspondence and reprint requests to Dr. C. Yung Yu, Children’s Re- serine/threonine nuclear protein kinase RP, complement C4, steroid 21-hydroxylase search Institute, Department of Pediatrics, The Ohio State University, 700 Children’s CYP21, and extracellular matrix protein tenascin TNX; BMI, body mass index; C4HA, Drive, Columbus, OH 43205. E-mail address: [email protected]; or Dr. George Fu¨st, C4 hemolytic activity; HERV-K(C4), human endogenous retrovirus in long C4 gene; Third Department of Medicine, Semmelweis Medical University, Budapest, HVAGE, high voltage agarose gel electrophoresis; L, RCCX module with long C4 Ku´tvo¨lgyi u´t 4, H-1125, Hungary. E-mail address: [email protected]. gene; S, RCCX module with short C4 gene. Copyright © 2003 by The American Association of Immunologists, Inc. 0022-1767/03/$02.00 The Journal of Immunology 2735 row are rare in Caucasians, but relatively common in Asians (19, Preparation of genomic DNA, Southern blot analysis, and 23). The impacts of the C4 polygenic and gene size variations on DNA probes C4 protein levels and functional activities have not been accurately Genomic DNAs were prepared from PBMC (40). Southern blot analyses of studied in a population. TaqI-digested or PshAI-digested genomic DNAs were performed, as de- Complement component C4 is important in immunity, toler- scribed in previous publications (18, 41). The TaqI genomic blots were ance, and autoimmunity (24–27). It plays essential roles in linking hybridized with three specific probes corresponding to RP, CYP21, and the recognition pathways of the complement system initiated by TNX. The results revealed the presence and dosage of RP1-C4L (7.0 kb), RP1-C4S (6.4 kb), RP2-C4L (6.0 kb), and RP2-C4S (5.4 kb); the presence Ag-Ab or Ag-mannan-binding lectin complexes to the effectors of and relative dosage of CYP21B (3.7 kb) and CYP21A (3.2 kb); and the the humoral immune response. Complete deficiency of comple- presence and relative dosage of TNXB (2.5 kb) and TNXA (2.4 kb). The ment C4 (i.e., both C4A and C4B) is one of the most penetrant number of RCCX modules was independently confirmed by PshAI-RFLP genetic risk factors in autoimmune disease such as systemic lupus using a RP 3Ј probe to determine the relative dosage of RP1 (7.2-kb) and RP2 (8.3-kb) fragments. The relative dosages of C4A and C4B genes were erythematosus (28, 29). Complete or partial deficiencies of C4B determined by PshAI RFLP using a C4d-specific probe corresponding to are related to vulnerability and severity of microbial infections (30, C4 gene exons 28–31 (Fig.
Recommended publications
  • The Membrane Complement Regulatory Protein CD59 and Its Association with Rheumatoid Arthritis and Systemic Lupus Erythematosus
    Current Medicine Research and Practice 9 (2019) 182e188 Contents lists available at ScienceDirect Current Medicine Research and Practice journal homepage: www.elsevier.com/locate/cmrp Review Article The membrane complement regulatory protein CD59 and its association with rheumatoid arthritis and systemic lupus erythematosus * Nibhriti Das a, Devyani Anand a, Bintili Biswas b, Deepa Kumari c, Monika Gandhi c, a Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India b Department of Zoology, Ramjas College, University of Delhi, India c University School of Biotechnology, Guru Gobind Singh Indraprastha University, India article info abstract Article history: The complement cascade consisting of about 50 soluble and cell surface proteins is activated in auto- Received 8 May 2019 immune inflammatory disorders. This contributes to the pathological manifestations in these diseases. In Accepted 30 July 2019 normal health, the soluble and membrane complement regulatory proteins protect the host against Available online 5 August 2019 complement-mediated self-tissue injury by controlling the extent of complement activation within the desired limits for the host's benefit. CD59 is a membrane complement regulatory protein that inhibits the Keywords: formation of the terminal complement complex or membrane attack complex (C5b6789n) which is CD59 generated on complement activation by any of the three pathways, namely, the classical, alternative, and RA SLE the mannose-binding lectin pathway. Animal experiments and human studies have suggested impor- Pathophysiology tance of membrane complement proteins including CD59 in the pathophysiology of rheumatoid arthritis Disease marker (RA) and systemic lupus erythematosus (SLE). Here is a brief review on CD59 and its distribution, structure, functions, and association with RA and SLE starting with a brief introduction on the com- plement system, its activation, the biological functions, and relations of membrane complement regu- latory proteins, especially CD59, with RA and SLE.
    [Show full text]
  • More Than a Pore: Nonlytic Antimicrobial Functions of Downloaded from Complement and Bacterial Strategies for Evasion
    REVIEW More than a Pore: Nonlytic Antimicrobial Functions of Downloaded from Complement and Bacterial Strategies for Evasion Elisabet Bjanes,a Victor Nizeta,b aDivision of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA bSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA http://mmbr.asm.org/ SUMMARY ........................................................................1 INTRODUCTION ...................................................................2 BY THE BOOK: CANONICAL COMPLEMENT CASCADES ...............................2 Off to the Races—Pathway Activation . 2 More and More—Amplification . 3 End of the Line—Termination . 3 Pump the Brakes—Inhibition . 5 Surviving MAC Attack—Evasion of Complement Lysis by Gram-Negative Bacteria . 6 NONLYTIC COMPLEMENT FUNCTIONS AND BACTERIAL EVASION MECHANISMS ......8 Special Considerations in Gram-Positive Bacteria . 8 on January 27, 2021 at UNIV OF CALIF SAN DIEGO Preparing the Meal—Complement Aids Opsonization and Phagocytosis . 8 Food for Thought—Complement Traffics to Autophagy . 10 Fueling the Fire—Complement Modulates Inflammatory Responses . 11 Casting a Wider NET—Complement and Neutrophil Synergy . 12 Inside Scoop—Novel Roles of Intracellular Complement . 13 Tying the Clot—Complement and Coagulation Cross Talk . 15 Bridging the Gap—Complement Instructs Adaptive Immunity . 17 REFRAMING SCIENTIFIC PARADIGMS AND THERAPEUTIC APPROACHES TO ENCOMPASS COMPLEMENT ..................................................18
    [Show full text]
  • Regulation of Decay Accelerating Factor Primes Human Germinal Center B Cells for Phagocytosis
    ORIGINAL RESEARCH published: 05 January 2021 doi: 10.3389/fimmu.2020.599647 Regulation of Decay Accelerating Factor Primes Human Germinal Center B Cells for Phagocytosis Andy Dernstedt 1, Jana Leidig 1, Anna Holm 2, Priscilla F. Kerkman 1, Jenny Mjösberg 3, Clas Ahlm 1, Johan Henriksson 4, Magnus Hultdin 5 and Mattias N. E. Forsell 1* 1 Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden, 2 Department of Clinical Sciences, Division of Otorhinolaryngology, Umeå University, Umeå, Sweden, 3 Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden, 4 Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden, 5 Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden Germinal centers (GC) are sites for extensive B cell proliferation and homeostasis is maintained by programmed cell death. The complement regulatory protein Decay Edited by: Accelerating Factor (DAF) blocks complement deposition on host cells and therefore Judith Fraussen, also phagocytosis of cells. Here, we show that B cells downregulate DAF upon BCR University of Hasselt, Belgium lo Reviewed by: engagement and that T cell-dependent stimuli preferentially led to activation of DAF B lo Paolo Casali, cells. Consistent with this, a majority of light and dark zone GC B cells were DAF and University of Texas Health Science susceptible to complement-dependent phagocytosis, as compared with DAFhi GC B Center at San Antonio, United States hi Shengli Xu, cells. We could also show that the DAF GC B cell subset had increased expression of the Bioprocessing Technology Institute plasma cell marker Blimp-1.
    [Show full text]
  • LP Review Published.Pdf
    Molecular Immunology 56 (2013) 413–422 Contents lists available at SciVerse ScienceDirect Molecular Immunology jo urnal homepage: www.elsevier.com/locate/molimm Review Toward a structure-based comprehension of the lectin pathway of complement a a b,∗ Troels R. Kjaer , Steffen Thiel , Gregers R. Andersen a Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus, Denmark b Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark a r t a b i c l e i n f o s t r a c t Article history: To initiate the lectin pathway of complement pattern recognition molecules bind to surface-linked car- Received 2 May 2013 bohydrates or acetyl groups on pathogens or damaged self-tissue. This leads to activation of the serine Accepted 14 May 2013 proteases MASP-1 and MASP-2 resulting in deposition of C4 on the activator and assembly of the C3 convertase. In addition MASP-3 and the non-catalytic MAp19 and MAp44 presumably play regulatory Keywords: functions, but the exact function of the MASP-3 protease remains to be established. Recent functional Complement system studies have significantly advanced our understanding of the molecular events occurring as activation Pattern recognition progresses from pattern recognition to convertase assembly. Furthermore, atomic structures derived MBL MASP by crystallography or solution scattering of most proteins acting in the lectin pathway and two key complexes have become available. Here we integrate the current functional and structural knowledge Protease activation C4 concerning the lectin pathway proteins and derive overall models for their glycan bound complexes.
    [Show full text]
  • Hereditary Angioedema: a Broad Review for Clinicians
    REVIEW ARTICLE Hereditary Angioedema A Broad Review for Clinicians Ugochukwu C. Nzeako, MD, MPH; Evangelo Frigas, MD; William J. Tremaine, MD ereditary angioedema (HAE) is an autosomal dominant disease that afflicts 1 in 10000 to 1 in 150000 persons; HAE has been reported in all races, and no sex predomi- nance has been found. It manifests as recurrent attacks of intense, massive, localized edema without concomitant pruritus, often resulting from one of several known trig- Hgers. However, attacks can occur in the absence of any identifiable initiating event. Historically, 2 types of HAE have been described. However, a variant, possibly X-linked, inherited angioedema has recently been described, and tentatively it has been named “type 3” HAE. Signs and symptoms are identical in all types of HAE. Skin and visceral organs may be involved by the typically massive local edema. The most commonly involved viscera are the respiratory and gastrointestinal sys- tems. Involvement of the upper airways can result in severe life-threatening symptoms, including the risk of asphyxiation, unless appropriate interventions are taken. Quantitative and functional analyses of C1 esterase inhibitor and complement components C4 and C1q should be performed when HAE is suspected. Acute exacerbations of the disease should be treated with intravenous purified C1 esterase inhibitor concentrate, where available. Intravenous administration of fresh frozen plasma is also useful in acute HAE; however, it occasionally exacerbates symptoms. Corti- costeroids, antihistamines, and epinephrine can be useful adjuncts but typically are not effica- cious in aborting acute attacks. Prophylactic management involves long-term use of attenuated androgens or antifibrinolytic agents.
    [Show full text]
  • Complement Modulates the Cutaneous Microbiome and Inflammatory Milieu
    Complement modulates the cutaneous microbiome and inflammatory milieu Christel Chehouda, Stavros Rafailb, Amanda S. Tyldsleya, John T. Seykoraa, John D. Lambrisb,1, and Elizabeth A. Gricea,1 Departments of aDermatology and bPathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 Edited by Andrea J. Tenner, University of California, Irvine, CA, and accepted by the Editorial Board August 2, 2013 (received for review April 26, 2013) The skin is colonized by a plethora of microbes that include systemic lupus erythematosus, lichen planus, xeroderma pigmento- commensals and potential pathogens, but it is currently un- sum, and recurrent cutaneous infection (15–18). known how cutaneous host immune mechanisms influence the Complement is triggered by one of three pathways (classical, composition, diversity, and quantity of the skin microbiota. alternative, or lectin), which all converge in the activation of the Here we reveal an interactive role for complement in cutaneous third complement component (C3). Following activation, the host–microbiome interactions. Inhibiting signaling of the com- release of biologically active proteins promote diverse defense plement component C5a receptor (C5aR) altered the composi- mechanisms such as microbial opsonization and phagocytosis, tion and diversity of the skin microbiota as revealed by deep direct lysis of target microbial cells through the membrane attack sequencing of the bacterial 16S rRNA gene. In parallel, we dem- complex (MAC), and the generation of effector molecules that fl onstrate that C5aR inhibition results in down-regulation of mediate recruitment and activation of in ammatory cells (13). genes encoding cutaneous antimicrobial peptides, pattern recog- This latter function, mediated by the complement C3a and C5a nition receptors, and proinflammatory mediators.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Adenovirus Species B Interactions with CD46
    Adenovirus Species B interactions with CD46 Dan Gustafsson Institution of Clinical Microbiology, Department of Virology Umeå 2012 Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-368-6 ISSN: 0346-6612 Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Print&Media Umeå, Sweden 2012 To my family! Table of Contents Table of contents ……………………………………………………...……… i Abstract ……………………………………………………………………...…. iii Abbreviations …………………………………………………………………. iv Summary in Swedish, Populärvetenskaplig sammanfattning på svenska ……………………………………………………………………… vi List of papers …………………………………………………………………………… 1 Aim of thesis ………………………………………........................................... 2 Introduction ……………………………………………………........................ 3 History…………………………………………………………………………….. 3 Taxonomy…………………………………………………………………………. 3 Epidemiology and clinical features……………………………………………….. 5 Adenoviruses Structure ……………………………………………………. 6 General structure………………………………………………………………….. 6 The capsid………………………………………………………………………… 8 Major Proteins…………………………………………………………………….. 9 Hexon………………………………………………………………………………9 The Penton Base………………………………………………………………….. 10 The Fiber………………………………………………………………………….. 11 Minor Proteins…………………………………………………………………….. 14 Capsid proteins……………………………………………………………………. 14 Protein IIIa………………………………………………………………………… 14 Protein VI…………………………………………………………………………. 14 Protein VIII……………………………………………………………………….. 15 Protein IX………………………………………………………………………….
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. LXXXVII
    Supplemental Material can be found at: /content/suppl/2014/09/18/65.1.500.DC1.html 1521-0081/65/1/500–543$25.00 http://dx.doi.org/10.1124/pr.111.005223 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:500–543, January 2013 Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics International Union of Basic and Clinical Pharmacology. LXXXVII. Complement Peptide C5a, C4a, and C3a Receptors Andreas Klos, Elisabeth Wende, Kathryn J. Wareham, and Peter N. Monk Department for Medical Microbiology, Medical School Hannover, Hannover, Germany (A.K., E.W.); and the Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, United Kingdom (K.J.W., P.N.M.) Abstract. ....................................................................................502 I. Introduction. ..............................................................................503 A. Production of Complement Peptides......................................................503 B. Concentrations of Complement Peptides in Health and Disease. .........................503 C. C3a and C5a Generation outside the Complement Cascade ...............................504 D. Deactivation of Complement Peptides ....................................................505 II. The Role of Complement Peptides in Pathophysiology . .....................................505 A. Complement Peptides Are Important Biomarkers of Disease..............................505 B. Functions of the Complement Peptides beyond Innate Immunity .........................506
    [Show full text]
  • C4a: the Third Anaphylatoxin of the Human Complement System (Phlogogenic Peptides/C3a and C5a Anaphylatoxins/Structural Homology/Cell Surface Receptors) JEFFREY P
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 10, pp. 5299-5302, October 1979 Immunology C4a: The third anaphylatoxin of the human complement system (phlogogenic peptides/C3a and C5a anaphylatoxins/structural homology/cell surface receptors) JEFFREY P. GORSKI*, TONY E. HUGLI, AND HANS J. MULLER-EBERHARDt Department of Molecular Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037 Contributed by Hans J. Muller-Eberhard, July 30, 1979 ABSTRACT The activation peptide C4a was isolated from creased to 4.5 with glacial acetic acid and the protein solution CIS-cleaved C4, the fourth component of complement. The was held for 2 hr at 4°C to facilitate dissociation of C4a from peptide appeared to be homogeneous by electrophoresis on cellulose acetate and by polyacrylamide gel electrophoresis. C4a cleaved C4. The pH was then adjusted to 6.5 and the material has a molecular weight of 8650 and an electrophoretic mobility was applied to a CM-Sephadex A-50 column equilibrated with at pH 8.6 of +2.1 X 10-5 cm2 V-1 sec-t. Carboxypeptidase B 0.05 M sodium acetate, pH 6.5/0.01 M EDTA/15 mM benz- released approximately 1 mol of arginine per mol of C4a. The amidine-HCI/0.05 M e-amino-n-caproic acid/0.02% NaN3. partial COOH-terminal sequence was determined to be Leu- The column was thoroughly washed with the same buffer to Gln-Arg-COOH. The isolated C4a was spasmogenic for guinea remove C4b and Cl, and C4a was eluted with a concentration pig ileum at a concentration of 1 AM and it desensitized the muscle (i.e., produced tachyphylaxis) with respect to human C3a gradient of NaCl to a limiting concentration of 0.3 M.
    [Show full text]
  • Co-Occurrence Between C1 Esterase Inhibitor Deficiency And
    Levy et al. Allergy Asthma Clin Immunol (2020) 16:41 Allergy, Asthma & Clinical Immunology https://doi.org/10.1186/s13223-020-00437-x RESEARCH Open Access Co-occurrence between C1 esterase inhibitor defciency and autoimmune disease: a systematic literature review Donald Levy1* , Timothy Craig2, Paul K. Keith3, Girishanthy Krishnarajah4,7, Rachel Beckerman5 and Subhransu Prusty6 Abstract Background: Hereditary angioedema (HAE) is caused by a SERPING1 gene defect resulting in decreased (Type I) or dysfunctional (Type II) C1 esterase inhibitor (C1-INH). The prevalence of autoimmune diseases (ADs) in patients with HAE appears to be higher than the general population. A systematic literature review was conducted to examine the co-occurrence between HAE and ADs. Methods: PubMed/EMBASE were searched for English-language reviews, case reports, observational studies, retrospective studies, and randomized controlled trials up to 04/15/2018 (04/15/2015-04/15/2018 for EMBASE) that mentioned patients with HAE Type I or II and comorbid ADs. Non-human or in vitro studies and publications of C1-INH defciency secondary to lymphoproliferative disorders or angiotensin-converting-enzyme inhibitors were excluded. Results: Of the 2880 records screened, 76 met the eligibility criteria and 155 individual occurrences of co-occurring HAE and AD were mentioned. The most common ADs were systemic lupus erythematosus (30 mentions), thyroid disease (21 mentions), and glomerulonephritis (16 mentions). When ADs were grouped by MedDRA v21.0 High Level Terms, the most common were: Lupus Erythematosus and Associated Conditions, n 52; Endocrine Autoimmune Disorders, n 21; Gastrointestinal Infammatory Conditions, n 16; Glomerulonephritis= and Nephrotic Syndrome, n 16; Rheumatoid= Arthritis and Associated Conditions, n 11;= Eye, Salivary Gland and Connective Tissue Disorders, n = 10; and Immune and Associated Conditions Not Elsewhere= Classifed, n 5.
    [Show full text]
  • S41467-019-13480-Z OPEN Insights Into Malaria Susceptibility Using Genome- Wide Data on 17,000 Individuals from Africa, Asia and Oceania
    ARTICLE https://doi.org/10.1038/s41467-019-13480-z OPEN Insights into malaria susceptibility using genome- wide data on 17,000 individuals from Africa, Asia and Oceania Malaria Genomic Epidemiology Network The human genetic factors that affect resistance to infectious disease are poorly understood. Here we report a genome-wide association study in 17,000 severe malaria cases and 1234567890():,; population controls from 11 countries, informed by sequencing of family trios and by direct typing of candidate loci in an additional 15,000 samples. We identify five replic- able associations with genome-wide levels of evidence including a newly implicated variant on chromosome 6. Jointly, these variants account for around one-tenth of the heritability of severe malaria, which we estimate as ~23% using genome-wide genotypes. We interrogate available functional data and discover an erythroid-specific transcription start site underlying the known association in ATP2B4, but are unable to identify a likely causal mechanism at the chromosome 6 locus. Previously reported HLA associations do not replicate in these sam- ples. This large dataset will provide a foundation for further research on the genetic deter- minants of malaria resistance in diverse populations. A full list of authors and their affiliations appears at the end of the paper. NATURE COMMUNICATIONS | (2019) 10:5732 | https://doi.org/10.1038/s41467-019-13480-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13480-z enome-wide association studies (GWASs) have been very passed our quality control process (Methods). Subsets of these successful in identifying common genetic variants data from The Gambia, Malawi and Kenya7, from Tanzania8 and G 9 underlying chronic non-communicable diseases, but have from selected control samples have been reported previously proved to be more difficult for acute infectious diseases that (Supplementary Table 2).
    [Show full text]