6. Le Xuan Tham

Total Page:16

File Type:pdf, Size:1020Kb

6. Le Xuan Tham 33(3): 29-39 T¹p chÝ Sinh häc 9-2011 Nghiªn cøu sù ph©n hãa sinh ®Þa häc cña nÊm h−¬ng (Lentinula edodes ) vµ loµi míi - B¹ch kim h−¬ng (Lentinula platinedodes sp. nov.) ph¸t hiÖn ë C¸t Tiªn, Nam ViÖt Nam Lª Xu©n Th¸m, NguyÔn Nh¦ CH¦¥NG Së Khoa häc vµ C«ng nghÖ L©m §ång Ph¹m Ngäc D−¬ng V−ên Quèc gia C¸t Tiªn Bïi Hoµng Thiªm Së Khoa häc vµ C«ng nghÖ §ång Nai Trong c¸c ®ît kh¶o s¸t vÒ ®a d¹ng nÊm h×nh th¸i c¸ thÓ vµ ph©n hãa sinh ®Þa häc cña h−¬ng (Shiitake) thuéc chi Lentinula Earle, Lentinula edodes vµ kh¶ n¨ng cïng nguån gèc chóng t«i ® ph¸t hiÖn nhiÒu chñng ®Þa lý ph©n cña chi Lentinula . hãa ®Æc s¾c tõ vïng nói cao Sa Pa, Cao B»ng, B¾c ViÖt Nam, tõ vïng nói cao Langbiang, §µ i. PH¦¥NG PH¸P nghiªn cøu L¹t, L©m §ång vµ ®Õn vïng chuyÓn tiÕp tõ cao nguyªn xuèng ®ång b»ng - V−ên quèc gia 1. Chñng nÊm h−¬ng (VQG) C¸t Tiªn, §ång Nai, Nam ViÖt Nam, M−êi chñng nÊm h−¬ng thuéc chi Lentinula : ® ph©n tÝch so s¸nh víi c¸c chñng ë NhËt B¶n, (1) . Chñng nÊm h−¬ng Sa Pa (SP) nguån gèc Trung Quèc vÒ h×nh th¸i vµ cÊu tróc DNA [20]. hoang d¹i, ®−îc thu thËp t¹i huyÖn Sa Pa, Lµo Trong ®ã míi giíi thiÖu s¬ bé h×nh th¸i vÒ 1 loµi Cai khi mäc ré vµo nh÷ng th¸ng mïa ®«ng cã t¸n nÊm tr−ëng thµnh mµu b¹ch kim, dù kiÕn (3/2008, 2011) gi¸ l¹nh ( ≤ 7 °C), do ng−êi d©n lµ míi: Lentinula platinedodes , sp. nov., rÊt gÇn b¶n ®Þa thu h¸i trong rõng cung cÊp; (2) . Chñng víi loµi chuÈn Lentinula boryana - chØ ph©n bè nÊm h−¬ng Lentinula edodes nguån gèc hoang ë vïng Trung, Nam Mü. d¹i ë Cao B»ng, tõ Së Khoa häc & C«ng nghÖ Nghiªn cøu cña TrÞnh Tam KiÖt (1981) [8] Cao B»ng; (3, 4) . Chñng nÊm h−¬ng D2 vµ L170 cho thÊy chØ ghi nhËn mét loµi ë ViÖt Nam: ®−îc nu«i trång nhiÒu n¨m t¹i §µ L¹t, tõ ViÖn Lentinula edodes (Berk.) Pegl. víi nÊm h−¬ng NÊm Tottori, NhËt B¶n; (5) . Chñng nÊm h−¬ng c¸c vïng nói cao B¾c ViÖt Nam gi¸p giíi víi V©n Nam, Trung Quèc (YuC) do Lª Xu©n Trung Quèc, nhÊt lµ vïng Cao B»ng, song ® chØ Th¸m s−u tËp; (6) . Chñng nÊm h−¬ng ë thµnh ra mét sè nÐt ph©n hãa ®Æc biÖt: bao chung d¹ng phè Tr−êng Sa, Trung Quèc (ChsC); (7) . Chñng bét dÔ tan biÕn, hÖ sîi kh«ng thuÇn nhÊt. Sau nÊm h−¬ng nguyªn gèc nói Langbiang, §µ L¹t nµy, chóng t«i còng nhÊn m¹nh thêm vµ chñng thuéc Lentinula edodes do Tr−¬ng B×nh Nguyªn Sa Pa cã nhiÒu ®Æc ®iÓm ph©n hãa gÇn víi loµi s−u tËp; (8, 9) . Hai chñng thuéc loµi Lentinula Lentinula lateritia h¬n lµ L. edodes vµ ®Ò nghÞ lateritia (L.l, L.l’) hoang d¹i ®−îc thu thËp t¹i lµ mét thø ®Þa lý míi [20]. vïng B¾c C¸t Tiªn (C¸t Léc, Bï Sa) vµ nói Trong c«ng tr×nh nµy chóng t«i ph©n tÝch Langbiang, L©m §ång ë ®é cao gÇn 2000 m; c¸c chñng nÊm h−¬ng Shiitake ë B¾c vµ Nam (10) . Trong ®ît kh¶o s¸t gi÷a mïa m−a (5- ViÖt Nam s©u vÒ h×nh th¸i vµ ph©n tö, so s¸nh 10/2008) vµ ®Çu n¨m (4/2009) t¹i tuyÕn Th¸c víi c¸c chñng loµi míi ph¸t hiÖn ë Nam C¸t Trêi, Nam C¸t Tiªn thu ®−îc mÉu cña mét loµi Tiªn, trong ®ã x¸c lËp c¬ së ®Çy ®ñ cho loµi míi rÊt gièng víi loµi chuÈn Lentinula boryana , cã Lentinula platinedodes sp. nov., tiÕn mét b−íc thÓ lµ míi Lentinula sp., bao gåm 2 d¹ng vÒ quan hÖ chñng lo¹i ph¸t sinh, sù ph¸t sinh Lentinula sp.2 vµ Lentinula sp.3. C¸c chñng loµi 29 nµy hiÖn ®ang ®−îc l−u gi÷ t¹i B¶o tµng NÊm, Ph©n lËp gièng thuÇn khiÕt trªn m«i tr−êng PGA VQG C¸t Tiªn vµ Së Khoa häc vµ C«ng nghÖ, c¶i tiÕn; Kh¶o s¸t tèc ®é lan t¬ trªn m«i tr−êng L©m §ång. Toµn bé vËt liÖu gièng nÊm gèc h¹t; Kh¶o s¸t tèc ®é lan t¬ trªn m«i tr−êng mïn ®−îc b¶o tån t¹i B¶o tµng gièng chuÈn - VTCC c−a; Kh¶o s¸t qu¸ tr×nh ra qu¶ thÓ. thuéc ViÖn Vi sinh vËt vµ C«ng nghÖ sinh häc, 5. Qui tr×nh ph©n tÝch rDNA §¹i häc quèc gia Hµ Néi vµ Phßng C«ng nghÖ Vi sinh øng dông, Së Khoa häc vµ C«ng nghÖ C¸c b−íc ph©n tÝch rDNA ®−îc tiÕn hµnh L©m §ång. theo Lª Xu©n Th¸m vµ nnk. (2010) [20]. 2. Ph©n tÝch h×nh th¸i C¸c s¶n phÈm PCR tinh s¹ch ®−îc khuÕch C¸c mÉu vËt sau khi ph©n tÝch, chôp ¶nh ®¹i víi bé kÝt ABI PRISM Cycle sequencing vµ ®−îc ®Þnh lo¹i trªn c¬ së c¸c t− liÖu cña: Pegler ®Öm 5x sequence (Perkin-Elmer Applied (1975, 1983) [14, 15], Singer (1986) [19], Biosystem) víi hçn hîp ph¶n øng. Hibbett vµ nnk. (1998) [5], Hibbett (2001) [6], Tr×nh tù cña ITS vµ D1/D2 26S rDNA cña TrÞnh Tam KiÖt (1981) [8], Mata & Petersen c¸c chñng nÊm ®−îc ®äc trùc tiÕp trªn m¸y ®äc (2000, 2001) [9, 10], kÕt hîp tra cøu vµ so s¸nh tr×nh tù tù ®éng 3100 Avant. Sau ®ã, kÕt qu¶ trªn internet. tr×nh tù ®−îc so s¸nh víi c¸c tr×nh tù cña c¸c loµi ® ®−îc x¸c ®Þnh trong GenBank. 3. Ph©n lËp gièng nÊm C©y ph¸t sinh chñng lo¹i ®−îc x©y dùng sö PGA (Potato Glucose Agar) c¶i tiÕn lµ m«i dông phÇn mÒm ClustalX 1.83. KÕt hîp víi tr−êng t¸ch gièng thuÇn khiÕt vµ kh¶o s¸t hÖ sîi ph©n lo¹i truyÒn thèng, c¸c mèi quan hÖ ph¸t trªn m«i tr−êng th¹ch cã thµnh phÇn cho mét lÝt sinh tiÕn hãa cña c¸c taxon ®−îc thÈm ®Þnh vµ m«i tr−êng: 200 g khoai t©y, 100 g cµ rèt, 1 g ®¸nh gi¸. peptone, 100 g gi¸ ®ç, 0,5 g KH 2PO 4, 0,5g MgSO 4, 15 g glucose, 15 g agar. Khoai t©y, cµ ii. KÕT QU¶ Vµ TH¶O LUËN rèt ®−îc gät vá vµ gi¸ ®ç ®−îc röa s¹ch ®un s«i kho¶ng 15-20 phót, läc lÊy n−íc chiÕt, bá x¸c 1. Ph¸t hiÖn nÊm b¹ch kim h−¬ng Lentinula b. M«i tr−êng PGA ®−îc hÊp khö trïng ë platinedodes sp. nov. C¸t Tiªn 121 °C, 1 atm trong 30 phót. M«i tr−êng cÊy chuyÒn gièng cÊp hai vµ kh¶o s¸t hÖ sîi trªn Dù kiÕn ®©y còng lµ loµi míi ghi nhËn cho m«i tr−êng h¹t: 1000 g g¹o løc, 600-700 ml khu hÖ Lentinula ë ViÖt Nam, ®−a tæng sè hiÖn n−íc, 0,5 g CaCO 3. G¹o løc ®−îc nÊu chÝn råi biÕt lªn 2-3 loµi. MÉu thu ®−îc ë Nam C¸t Tiªn trén víi CaCO 3 cho vµo èng nghiÖm vµ hÊp khö bao gåm 2 d¹ng h×nh hÕt søc ®Æc s¾c. LÇn ®Çu trïng ë 120 °C, 1 atm trong 60 phót. tiªn ë vïng Th¸c Trêi nãng Èm ®Çu mïa m−a nhiÖt ®íi (~30 oC), nÊm h−¬ng mäc ré, thÓ hiÖn 4. Nu«i trång ra qu¶ thÓ nh÷ng nÐt gièng víi L. lateritia , song kh¸ phï Mïn c−a lµ nguyªn liÖu chÝnh ®−îc bæ sung hîp víi m« t¶ loµi chuÈn L. boryana ë Trung 10% c¸m g¹o, 10% c¸m b¾p, 5% bét b¸nh dÇu Mü. Nhµ nÊm häc Earle x¸c ®Þnh loµi chuÈn , t×m thÊy ë Cu Ba, Trung Mü, khi ®ã, vµ 1% CaCO 3 vµ n−íc, trén ®Òu ®Ó ®é Èm ®¹t L. cubensis 60-70%. Sau ®ã 1 kg c¬ chÊt ®−îc cho vµo bÞch ®©y lµ loµi duy nhÊt cho chi míi Lentinula t¸ch vµ hÊp khö trïng 120 phót ë 121 °C, 1 atm vµ ra tõ Lentinus Fr., vµo n¨m 1909, dùa vµo mÉu tiÕp tôc hÊp khö trïng lÇn 2 sau 24 h. Gièng vËt do Berkeley vµ Curtis x¸c lËp: Lentinus ®−îc cÊy tõ m«i tr−êng h¹t sang m«i tr−êng cubensis Berk.
Recommended publications
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Mycomedicine: a Unique Class of Natural Products with Potent Anti-Tumour Bioactivities
    molecules Review Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities Rongchen Dai 1,†, Mengfan Liu 1,†, Wan Najbah Nik Nabil 1,2 , Zhichao Xi 1,* and Hongxi Xu 3,* 1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; [email protected] (R.D.); [email protected] (M.L.); [email protected] (W.N.N.N.) 2 Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China * Correspondence: [email protected] (Z.X.); [email protected] (H.X) † These authors contributed equally to this work. Abstract: Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccha- rides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medic- inal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mush- rooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti- cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mecha- Citation: Dai, R.; Liu, M.; Nik Nabil, W.N.; Xi, Z.; Xu, H.
    [Show full text]
  • 2 the Numbers Behind Mushroom Biodiversity
    15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 ­Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.
    [Show full text]
  • Antioxidant and Anti-Inflammatory Potential of Shiitake Culinary
    Antioxidant and Anti-inflammatory Potential of Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), Sporophores from Various Culture Conditions Ibrahima Diallo, Frédéric Boudard, Sylvie Morel, Manon Vitou, Caroline Guzman, Nathalie Saint, Alain Michel, Sylvie Rapior, Lonsény Traoré, Patrick Poucheret, et al. To cite this version: Ibrahima Diallo, Frédéric Boudard, Sylvie Morel, Manon Vitou, Caroline Guzman, et al.. Antiox- idant and Anti-inflammatory Potential of Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), Sporophores from Various Culture Conditions. International Journal of Medici- nal Mushrooms, Begell House, 2020, 22 (6), pp.535-546. 10.1615/IntJMedMushrooms.2020034864. hal-02810176 HAL Id: hal-02810176 https://hal.umontpellier.fr/hal-02810176 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Short Title: Biological Activities of Cultivated Lentinus edodes Antioxidant and Anti-inflammatory Potential of Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes) Sporophores
    [Show full text]
  • Lentinula Madagasikarensis Sp. Nov., a Relative of Shiitake Mushrooms from Madagascar
    VOLUME 8 DECEMBER 2021 Fungal Systematics and Evolution PAGES 1–8 doi.org/10.3114/fuse.2021.08.01 Lentinula madagasikarensis sp. nov., a relative of shiitake mushrooms from Madagascar B.P. Looney1, B. Buyck2, N. Menolli Jr.3,4, E. Randrianjohany5, D. Hibbett1* 1Clark University, Department of Biology, Worcester, MA 01610, USA 2Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, Institut de Systématique, Écologie, Biodiversité (ISYEB), EPHE, 57 rue Cuvier, CP 39, F-75005, Paris, France 3Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil 4Instituto de Botânica (IBt), Núcleo de Pesquisa em Micologia (NPM), Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil 5Centre National de Recherche sur l’Environnement (CNRE), BP 1739, Lab. de Microbiologie de l’Environnement (LME), Antananarivo, Madagascar *Corresponding author: [email protected] Key words: Abstract: We describe the first species of Lentinula from Africa, Lentinula madagasikarensis sp. nov. The new taxon, Africa which was collected from central Madagascar, is strikingly similar to L. edodes, the shiitake mushroom. A BLAST search biogeography using ITS sequences from L. madagasikarensis as the query retrieves a mix of Lentinula, Gymnopus, Marasmiellus, and edible mushrooms other members of Omphalotaceae as the top hits. A 28S phylogeny of the Omphalotaceae confirms placement of L. Omphalotaceae madagasikarensis within Lentinula. An ITS phylogeny places L. madagasikarensis as the sister group of L. aciculospora, systematics which is a neotropical species. Lentinula madagasikarensis is characterized by robust basidiomata with vinaceous pilei, 1 new taxon prominent floccose scales near the pileus margin, florets of sphaeropedunculate cheilocystidia, and subcylindrical basidiospores.
    [Show full text]
  • Bổ Sung Dẫn Liệu Phân Tử Và Khảo Sát Đặc Điểm Nuôi Trồng Của Chủng Nấm Hương Sapa Lentinula Edodes
    102 Lê Huyền Ái Thúy và cộng sự. HCMCOUJS-Kỹ thuật và Công nghệ, 16(1), 102-111 Bổ sung dẫn liệu phân tử và khảo sát đặc điểm nuôi trồng của chủng nấm Hương Sapa Lentinula edodes Supplementation of molecular data and studying the cultural characteristics of Sapa shiitake mushroom Lentinula edodes Lê Huyền Ái Thúy1, Lao Đức Thuận1, Nguyễn Hoàng Mai2, Phan Hoàng Đại2, Nguyễn Trương Kiến Khương2, Trương Bình Nguyên2* 1Trường Đại học Mở Thành phố Hồ Chí Minh, Việt Nam 2Đại học Đà Lạt, Việt Nam *Tác giả liên hệ, Email: [email protected] THÔNG TIN TÓM TẮT DOI:10.46223/HCMCOUJS. Mẫu nấm Hương Sapa (Ký hiệu Len026) được thu hái tại tech.vi.16.1.1915.2021 vùng rừng núi xã Sơn Bình, huyện Tam Đường, tỉnh Lào Cai vào cuối tháng 05 năm 2019 khi đang phát triển trên các thân cây lá rộng mục. Các đặc điểm hình thái bên ngoài như màu nâu đỏ (khi ẩm ướt) chuyển sang vàng nâu, kèm các vết nứt nhẹ (khi khô) của Ngày nhận: 04/06/2021 mũ nấm cùng các vảy sợi trên bề mặt mũ, lớp thịt mũ mỏng, mép mũ cuộn khi non duỗi phẳng đến hơi vểnh lên khi già; Các đặc Ngày nhận lại: 07/06/2021 điểm hiển vi như cấu tạo dạng elip của bào tử và đặc biệt là sự tồn Duyệt đăng: 15/06/2021 tại của các liệt bào cạnh (pleurocystidia) và liệt bào đỉnh (cheilocystidia) cho thấy mẫu nấm này mang khá nhiều đặc điểm pha trộn của cả 03 loài Lentinula edodes, Lentinula lateritia và Lentinula boryana, là những loài loài đã được nhận định có thể tồn tại ở nước ta.
    [Show full text]
  • Mitogenome Types of Two Lentinula Edodes Sensu Lato Populations In
    www.nature.com/scientificreports OPEN Mitogenome types of two Lentinula edodes sensu lato populations in China Received: 11 November 2018 Xiaoxia Song, Yan Zhao, Chunyan Song, Mingjie Chen, Jianchun Huang, Dapeng Bao, Qi Tan Accepted: 20 June 2019 & Ruiheng Yang Published: xx xx xxxx China has two populations of Lentinula edodes sensu lato as follows: L. edodes sensu stricto and an unexcavated morphological species respectively designated as A and B. In a previous study, we found that the nuclear types of the two populations are distinct and that both have two branches (A1, A2, B1 and B2) based on the internal transcribed spacer 2 (ITS2) sequence. In this paper, their mitogenome types were studied by resequencing 20 of the strains. The results show that the mitogenome type (mt) of ITS2-A1 was mt-A1, that of ITS2-A2 was mt-A2, and those of ITS2-B1 and ITS2-B2 were mt-B. The strains with heterozygous ITS2 types had one mitogenome type, and some strains possessed a recombinant mitogenome. This indicated that there may be frequent genetic exchanges between the two populations and both nuclear and mitochondrial markers were necessary to identify the strains of L. edodes sensu lato. In addition, by screening SNP diversity and comparing four complete mitogenomes among mt-A1, mt-A2 and mt-B, the cob, cox3, nad2, nad3, nad4, nad5, rps3 and rrnS genes could be used to identify mt-A and mt-B and that the cox1, nad1 and rrnL genes could be used to identify mt-A1, mt-A2 and mt-B. Lentinula edodes (Berk.) Pegler belongs to Lentinula, Omphalotaceae, Agaricales, Agaricomycetes, Basidiomycota, Fungi1.
    [Show full text]
  • Ecology and Management of Morels Harvested from the Forests of Western North America
    United States Department of Ecology and Management of Agriculture Morels Harvested From the Forests Forest Service of Western North America Pacific Northwest Research Station David Pilz, Rebecca McLain, Susan Alexander, Luis Villarreal-Ruiz, General Technical Shannon Berch, Tricia L. Wurtz, Catherine G. Parks, Erika McFarlane, Report PNW-GTR-710 Blaze Baker, Randy Molina, and Jane E. Smith March 2007 Authors David Pilz is an affiliate faculty member, Department of Forest Science, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331-5752; Rebecca McLain is a senior policy analyst, Institute for Culture and Ecology, P.O. Box 6688, Port- land, OR 97228-6688; Susan Alexander is the regional economist, U.S. Depart- ment of Agriculture, Forest Service, Alaska Region, P.O. Box 21628, Juneau, AK 99802-1628; Luis Villarreal-Ruiz is an associate professor and researcher, Colegio de Postgraduados, Postgrado en Recursos Genéticos y Productividad-Genética, Montecillo Campus, Km. 36.5 Carr., México-Texcoco 56230, Estado de México; Shannon Berch is a forest soils ecologist, British Columbia Ministry of Forests, P.O. Box 9536 Stn. Prov. Govt., Victoria, BC V8W9C4, Canada; Tricia L. Wurtz is a research ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Boreal Ecology Cooperative Research Unit, Box 756780, University of Alaska, Fairbanks, AK 99775-6780; Catherine G. Parks is a research plant ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry and Range Sciences Laboratory, 1401 Gekeler Lane, La Grande, OR 97850-3368; Erika McFarlane is an independent contractor, 5801 28th Ave. NW, Seattle, WA 98107; Blaze Baker is a botanist, U.S.
    [Show full text]
  • The Genus Lentinula (Tricholomataceae Tribe Collybieae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1983 Band/Volume: 36 Autor(en)/Author(s): Pegler D. N. Artikel/Article: The genus Lentinula (Tricholomataceae tribe Collybieae). 227-239 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at The genus Lentinula (Tricholomataceae tribe Collybieae) D. N. PEGLER Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, England Summary. - The genus Lentinula is revised and redefined to include five species with a subtropical - tropical distribution. It includes two edible species. L. edodes from eastern Asia, and L. boryana, from tropical America. New combina- tions are proposed for Lentinula guarapiensis (SPEC) PEGLER, L. lateritia (BERK.) PEGLER, and L. novaezelandiae (STEV.) PEGLER. Introduction The genus Lentinula EARLE, originally based on Lentinus cuben- sis BERK. & CURT. (= Lentinula boryana (BERK. & MONT.) PEGLER), was long thought to be a later synonym of the much larger and more widespread genus, Lentinus FR. Little attention was given to it until PEGLER (1975) analysed the hyyphal structure and found it to be quite distinct to that found in species of Lentinus, and secondly, that the well known Shiitake Japanese Mushroom, widely called Len- tinus edodes (BERK.) SINGER, had a similar structure and would be more appropriately placed in Lentinula. Although the type species, L. boryana, and L. edodes are macroscopically distinctive and widely separated geographically, nevertheless there are a number of common features. Both are known to be edible and have been gathered for consumption over a long period of time, and both are associated with growing on dead Quercus - tree hosts.
    [Show full text]
  • Comparative Transcriptome Analysis of Dikaryotic Mycelia and Mature
    www.nature.com/scientificreports OPEN Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible Received: 13 March 2018 Accepted: 31 May 2018 mushroom Lentinula edodes Published: xx xx xxxx Ha-Yeon Song 1, Dae-Hyuk Kim2 & Jung-Mi Kim1 Lentinula edodes is a popular cultivated edible mushroom with high nutritional and medicinal value. To understand the regulation of gene expression in the dikaryotic mycelium and mature fruiting body in the commercially important Korean L. edodes strain, we frst performed comparative transcriptomic analysis, using Illumina HiSeq platform. De novo assembly of these sequences revealed 11,675 representative transcripts in two diferent stages of L. edodes. A total of 9,092 unigenes were annotated and subjected to Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Gene expression analysis revealed that 2,080 genes were diferentially expressed, with 1,503 and 577 upregulated in the mycelium and a mature fruiting body, respectively. Analysis of 18 KEGG categories indicated that fruiting body-specifc transcripts were signifcantly enriched in ‘replication and repair’ and ‘transcription’ pathways, which are important for premeiotic replication, karyogamy, and meiosis during maturation. We also searched for fruiting body-specifc proteins such as aspartic protease, gamma-glutamyl transpeptidase, and cyclohexanone monooxygenase, which are involved in fruiting body maturation and isolation of functional substances. These transcriptomes will be useful in elucidating the molecular mechanisms of mature fruiting body development and benefcial properties, and contribute to the characterization of novel genes in L. edodes. Basidiomycetous fungus Lentinula edodes, the shiitake mushroom, is the second most popular edible and medic- inal mushroom in terms of total global output and economic value in East Asia1,2.
    [Show full text]
  • Morphological and Molecular Systematics of Resupinatus (Basidiomycota)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-24-2015 12:00 AM Morphological and Molecular Systematics of Resupinatus (Basidiomycota) Jennifer McDonald The University of Western Ontario Supervisor Dr. R. Greg Thorn The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jennifer McDonald 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Life Sciences Commons Recommended Citation McDonald, Jennifer, "Morphological and Molecular Systematics of Resupinatus (Basidiomycota)" (2015). Electronic Thesis and Dissertation Repository. 3135. https://ir.lib.uwo.ca/etd/3135 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Morphological and Molecular Systematics of Resupinatus (Basidiomycota) (Thesis format: Integrated Article) by Jennifer Victoria McDonald Graduate Program in Biology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Jennifer V. McDonald 2015 i Abstract Cyphelloid fungi (small, cup-shaped Agaricomycetes with a smooth spore-bearing surface) are, compared to their
    [Show full text]
  • Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products
    Journal of Fungi Review Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products Shuang Zhao 1, Qi Gao 1, Chengbo Rong 1, Shouxian Wang 1, Zhekun Zhao 1,2, Yu Liu 1 and Jianping Xu 3,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; [email protected] (S.Z.); [email protected] (Q.G.); [email protected] (C.R.); [email protected] (S.W.); [email protected] (Z.Z.); [email protected] (Y.L.) 2 College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China 3 Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada * Correspondence: [email protected] Received: 10 October 2020; Accepted: 2 November 2020; Published: 8 November 2020 Abstract: Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products.
    [Show full text]