Internet Security (SS 2011)

Total Page:16

File Type:pdf, Size:1020Kb

Internet Security (SS 2011) Internet Security (SS 2011) 01 Basic concepts and definitions – Dichotomy (splitting the topic „security“ into two subsets) ● Host • node, physical or virtual machine • is (or can be) well-controlled by well-developed authentication and authorization models • strong notion of „privileged“ state • usually penetrated via a buggy application • focus of Jean-Pierre Seifert's lectures ● Network • anyone can connect • connectivity can only be controlled in very small, well-regulated environments, maybe not even then • different OS have different or no notions of user Ids and privileges • focus of Anja Feldmann's lectures – Principle: Trust nothing. A host should trust nothing that comes over the wire. – Network security tools ● Cryptography ● Network-based access control (e.g. firewalls) ● Monitoring ● Protocol analysis by formal verification ● paranoid design – Protocol design ● heavy use of crypto and authentication ● ensure that sensitive fields are protected ● bilateral authentication ● proper authorization ● defend against • eavesdropping • modification • deletion • replay • and combinations thereof – Definition of Computer Security: ● deals with the prevention and detection of unauthorized actions by users or others of a system. ● Main components: • Confidentiality: prevent unauthorized disclosure of information, origin: historical link of security to secrecy (few organizations dealing with classified data) • Integrity: prevent unauthorized modification of information • Availability: prevent unauthorized withholding of information services are accessible and useable (without undue delay) whenever needed by an authorized entity fault-tolerance is needed, e.g. against DoS ● Additional components: • authenticitiy, • accountability: actions affecting security must be traceable to the responsible party audit information must be kept and protected access control is needed • reliability – deals with accidental damage • safety – impact of system failure on the environment • dependability – reliance can be justifiable placed on the system • survivability – recovery of the system after massive failure – more terms: ● Vulnerability: • error or weakness in the design, implementation or operation of a system • Hardware: Interruption (DoS), Modification, Interception (Theft), Fabrication (Substitution) • Software: Interruption (Deletion), Modification, Interception, Fabrication • Data: Interruption (Loss), Modification, Interception, Fabrication ● Attack: means of exploiting some vulnerability in a system ● Threat: • adversary who is motivated and capable of exploiting a vulnerability • different enemies have different abilities • Serious enemies can exploit the „three B“: burglary, bribery and blackmail (in addition to social engineering) • cannot design a security system unless one knows who the enemy is ● Types of attackers: • „Joy hackers“: most are „script kiddies“, some are very competent share more tools than the good guys do • Hacking for profit allied with the spammers and phishers primary motivation: money sophisticated attacks, less pure vandalism botnets • organized crime • industrial espionage less than 5% of attacks are detected professionals know what they want and use non-technical means (social engineering) won't use your machine to attack others, so they are hard to find • inside jobs: What if your system administrator turns to the „Dark Side“? • Spies • Distinction needed because security is a matter of economics: how much security do you need/can you affors ● Assets • host-resident data • bandwidth • CPU time • knowledge of what hosts exist ● Cipher: • algorithm for encryption and decryption • operates syntactically • on elements of an alphabet or groups of letters (arbitrary plaintext → compute ciphertext) • usually depends on a piece of additional information, the key • distinct from codes ● Code: • operate semantically • on words, phrases or sentences • e.g. per codebooks • classical cryptography: substituting according to a large codebook which links random string of characters to a word or phrase [wikipedia] – Weakest point: Human „Humans are incapable of securely storing high-quality cryptographic keys, and they have unacceptable speed and accuracy when performing cryptographic operations. They are also large, expensive to maintain, difficult to manage, and they pollute the environment. It is astonishing that these devices continue to be manufactured and deployed, but they are sufficiently pervasive that we must design our protocols around their limitations. Kaufman et al. “ – examples of attacks: ● Bandwidth attacks • clog your bandwidth, e.g. DoS • use your bandwidth to attack someone else, e.g. reflector attacks: forge source address for UDP-based service where response is bigger than request • network identity attack: run a server with illegal content on hacked machine • eavesdropping: sniff password, credit card details ● Packet sniffing • easiest case: Broadcast media promiscuous NIC reads all packets passing by can read all unencrypted data 02 Crypto Basics – Cryptosystem ● pair of algorithms that take a key and convert plaintexts to ciphertexts and backwards ● symmetric = secret key = private key cryptosystem / cryptography ● asymmetric = public key cryptosystem / cryptography ● Main assumption: Kerckhoffs Principle (1883): Assume adversary knows the algorithm used, but not the key. ● Types of attacks: • ciphertext only • known plaintext • chosen plaintext ● Attacks: • mathematical attacks • statistical analysis – make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams) etc = models of the language • examine ciphertext, correlate properties with the assumptions – Symmetric Cryptography: – Substitution cipher ● monoalphabetic cipher: substitute one letter for another (Caesar Code) ● insecure due to language characteristics (statistical attack on frequency of letters) ● enumerate all keys (brute-force attack) ● because 26! = 4*1026 possible keys are very few – One Time Pad (Vernam/Mauborgne cipher 1917-18) ● Exclusive-Or a key stream tape (random sequence of 0 and 1) with the plaintext ● online encryption of teletype traffic, combined with transmission ● provably secure ● but need true-random keying tapes which are never reused – Stream Cipher ● process message one bit or byte at a time when en/decrypting ● key stream generator produces a sequence S of pseudo-random bytes (like a one time pad) ● key stream bytes are combined (usually via XOR) with plaintext bytes ● properties: • very good for asynchronous traffic • best known stream cipher: RC4 • key streams must never be reused for different plaintexts ● RC4: • internal state: 256-byte array S plus two integers • modifies the state and outputs a byte of the keystream in each iteration increments i, adds the value of S pointed to by i to j, exchanges the values of S[i] and S[j], outputs the value of S at the location S[i] + S[j] (modulo 256). Each value of S is swapped at least once every 256 iterations • no resynchronization except via re-keying + starting over – Block Cipher ● process message in blocks, each of which is then en/decrypted ● like a substitution on very big characters ● codebook would need 264 entries, one for each 64-bit block ● instead create it from smaller building blocks ● Claude Shannon substitution • two primitive cryptographic operations: • substitution (S-Box) - makes relationship between ciphertext and plaintext as complex as possible • permutation (P-Box) – diffusion of statistical properties of plaintext over the bulk of ciphertext • Basis for: ● Feistel Cipher Structure • based on concept of invertible product cipher • partition input block into two halves • process block through multiple rounds which: • perform a substitution on left data half based on round function of right half and subkey • then have permutation swapping halves • Design elements: block size, key size, number of rounds, subkey generation algorithm, round function, fast software en/decryption, ease of analysis ● Cipher design • number of rounds: more is better, exhaustive search best attack • function f: provides confusion, is nonlinear, avalanche • have issues of how S-boxes are selected • key schedule: complex subkey creation, key avalanche ● 5 Standard modes of operation: • Electronic Code Book (ECB) direct use primarily to transmit encrypted keys very weak for general-purpose encryption similar blocks of plaintext produce similar blocks of ciphertext enemy can build „code book“ of plaintext/ciphertext equivalents encryption only works for messages that are a multiple of the block size initialization vector should not be transmitted, else it does not increase security • Cipher Block Chaining (CBC) most frequently used mode for message encryption Initialization vector XOR plaintext1, encrypted, result is ciphertext1, result is also taken XOR plaintext2, then encrypted → result is ciphertext2 … ciphertext of each encrypted block depends on the plaintext of all preceding blocks subsets of blocks appear valid and will decrypt properly message integrity has to be done otherwise used for general file or packet encryption (input must be padded) drawback: encryption is sequential, cannot be parallelized one bit error in ciphertext causes complete corruption of the corresponding plaintext block and inverts the corresponding bit in the following plaintext block • Cipher Feedback (CFB) with n-bit shift relatively close to CBC move encryption operation before XOR operator
Recommended publications
  • Can We Trust Cryptographic Software? Cryptographic Flaws in GNU Privacy Guard V1.2.3
    Can We Trust Cryptographic Software? Cryptographic Flaws in GNU Privacy Guard v1.2.3 Phong Q. Nguyen CNRS/Ecole´ normale sup´erieure D´epartement d’informatique 45 rue d’Ulm, 75230 Paris Cedex 05, France. [email protected] http://www.di.ens.fr/˜pnguyen Abstract. More and more software use cryptography. But how can one know if what is implemented is good cryptography? For proprietary soft- ware, one cannot say much unless one proceeds to reverse-engineering, and history tends to show that bad cryptography is much more frequent than good cryptography there. Open source software thus sounds like a good solution, but the fact that a source code can be read does not imply that it is actually read, especially by cryptography experts. In this paper, we illustrate this point by examining the case of a basic In- ternet application of cryptography: secure email. We analyze parts of thesourcecodeofthelatestversionofGNUPrivacyGuard(GnuPGor GPG), a free open source alternative to the famous PGP software, com- pliant with the OpenPGP standard, and included in most GNU/Linux distributions such as Debian, MandrakeSoft, Red Hat and SuSE. We ob- serve several cryptographic flaws in GPG v1.2.3. The most serious flaw has been present in GPG for almost four years: we show that as soon as one (GPG-generated) ElGamal signature of an arbitrary message is released, one can recover the signer’s private key in less than a second on a PC. As a consequence, ElGamal signatures and the so-called ElGamal sign+encrypt keys have recently been removed from GPG.
    [Show full text]
  • Security Analysis and Trust Models in Wireless Networks Lela Mirtskhulava
    Security Analysis and Trust Models in Wireless Networks Lela Mirtskhulava [email protected] Department of Computer Sciences Faculty of Exact and Natural Sciences Iv. Javakhishvili Tbilisi State University University str., 13, Georgia In the given work, we analyse the serious weaknesses recently discovered in WPA2 (Wi-Fi Protected Access 2) in October 2017 and KRACK (Key Reinstallation Attack) attack on WPA2 announced by Computer Science Scientists. The KRACKs were introduced to abuse design flaws in cryptographic protocols to reinstall an already-in-use key. Several types of cryptographic Wi-Fi handshakes are affected by the attack. There are different forms of trust to address different types of network security problems and reduce risk in certain conditions. This paper explores the trust models applied by various cryptographic schemes: a) the web of trust employed by Pretty Good Privacy (PGP) where users using their own set of trusted public keys, b) Kerberos, a secret key distribution scheme using a trusted third party, c) certificates, which allow a set of trusted third parties to authenticate each other and, by implication, each other's users. Each of the above mentioned trust models differs in complexity, scope, scalability and general applicability. Which model of trust to apply in certain circumstances and types of wireless networks are discussed in the given paper. It describes the major security issues and their techniques of building trust model by monitoring network behavior. It is intended to use secure and faster cryptographic solution for Wi-Fi networks security by using an open source public-key NTRU cryptosystem that uses lattice-based cryptography.
    [Show full text]
  • SIGMA: the 'Sign-And-Mac' Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols
    SIGMA: the `SIGn-and-MAc' Approach to Authenticated Diffie-Hellman and its Use in the IKE Protocols ∗ Hugo Krawczyky June 12, 2003 Abstract We present the SIGMA family of key-exchange protocols and the \SIGn-and-MAc" approach to authenticated Diffie-Hellman underlying its design. The SIGMA protocols provide perfect forward secrecy via a Diffie-Hellman exchange authenticated with digital signatures, and are specifically designed to ensure sound cryptographic key exchange while supporting a variety of features and trade-offs required in practical scenarios (such as optional identity protection and reduced number of protocol rounds). As a consequence, the SIGMA protocols are very well suited for use in actual applications and for standardized key exchange. In particular, SIGMA serves as the cryptographic basis for the signature-based modes of the standardized Internet Key Exchange (IKE) protocol (versions 1 and 2). This paper describes the design rationale behind the SIGMA approach and protocols, and points out to many subtleties surrounding the design of secure key-exchange protocols in general, and identity-protecting protocols in particular. We motivate the design of SIGMA by comparing it to other protocols, most notable the STS protocol and its variants. In particular, it is shown how SIGMA solves some of the security shortcomings found in previous protocols. ∗A shortened version of this paper appears in the proceedings of CRYPTO'03. For further information related to the SIGMA protocols see http://www.ee.technion.ac.il/~hugo/sigma.html yEE Department, Technion, Haifa, Israel, and IBM T.J. Watson Research Center. Email: [email protected] 1 Contents 1 Introduction 1 2 Preliminaries: On the Security of Key-Exchange Protocols 4 2.1 Overview of the security model and requirements .
    [Show full text]
  • Security & Privacy for Mobile Phones
    Security & Privacy FOR Mobile Phones Carybé, Lucas Helfstein July 4, 2017 Instituto DE Matemática E Estatística - USP What IS security? • That GRANTS THE INFORMATION YOU PROVIDE THE ASSURANCES above; • That ENSURES THAT EVERY INDIVIDUAL IN THIS SYSTEM KNOWS EACH other; • That TRIES TO KEEP THE ABOVE PROMISES forever. Security IS ... A System! • That ASSURES YOU THE INTEGRITY AND AUTHENTICITY OF AN INFORMATION AS WELL AS ITS authors; 1 • That ENSURES THAT EVERY INDIVIDUAL IN THIS SYSTEM KNOWS EACH other; • That TRIES TO KEEP THE ABOVE PROMISES forever. Security IS ... A System! • That ASSURES YOU THE INTEGRITY AND AUTHENTICITY OF AN INFORMATION AS WELL AS ITS authors; • That GRANTS THE INFORMATION YOU PROVIDE THE ASSURANCES above; 1 • That TRIES TO KEEP THE ABOVE PROMISES forever. Security IS ... A System! • That ASSURES YOU THE INTEGRITY AND AUTHENTICITY OF AN INFORMATION AS WELL AS ITS authors; • That GRANTS THE INFORMATION YOU PROVIDE THE ASSURANCES above; • That ENSURES THAT EVERY INDIVIDUAL IN THIS SYSTEM KNOWS EACH other; 1 Security IS ... A System! • That ASSURES YOU THE INTEGRITY AND AUTHENTICITY OF AN INFORMATION AS WELL AS ITS authors; • That GRANTS THE INFORMATION YOU PROVIDE THE ASSURANCES above; • That ENSURES THAT EVERY INDIVIDUAL IN THIS SYSTEM KNOWS EACH other; • That TRIES TO KEEP THE ABOVE PROMISES forever. 1 Security IS ... A System! Eve | | | Alice "Hi" <---------------> "Hi" Bob 2 Security IS ... Cryptography! Eve | | | Alice "Hi" <----"*****"------> "Hi" Bob 3 Security IS ... Impossible! The ONLY TRULY SECURE SYSTEM IS ONE THAT IS POWERED off, CAST IN A BLOCK OF CONCRETE AND SEALED IN A lead-lined ROOM WITH ARMED GUARDS - AND EVEN THEN I HAVE MY doubts.
    [Show full text]
  • Loki: Location-Based PKI for Social Networks
    LoKI: Location-based PKI for Social Networks Randy Baden University of Maryland [email protected] http://www.cs.umd.edu/~randofu/loki Categories and Subject Descriptors decentralized OSNs. The out-of-band exchange of keys, how- C.2.0 [Computer Communications Networks]: General—Data ever, has proven too onerous for typical users [7]. We therefore communications; C.2.1 [Computer Communications Networks]: choose to design techniques that users are able to more readily Network Architecture and Design—Wireless communication; C.2.4 employ based on how users interact with each other in modern [Computer Communications Networks]: Distributed Systems— settings. Client/server, Distributed applications; C.5.3 [Computer Sys- Our main contribution is a system, LoKI, in which we use the tem Implementation]: Microcomputers—Portable devices (e.g., ubiquity of mobile devices to provide users with a new method laptops, personal digital assistants); E.3 [Data Encryption]: for verifying identities that does not require immediate user in- [Public key cryptosystems] teraction. Concretely, we propose collecting shared secrets from nearby mobile devices over the course of typical mobile activ- ity, then using these shared secrets post-hoc to perform identity General Terms verification based on user recollection of when real-world meet- Security, Design, Performance ings occurred. We estimate the frequency of real-world meet- ings among social network users with a data set of interactions recorded by Foursquare, Facebook, and Twitter. We evaluate Keywords the technical constraints of collecting and storing shared secrets Public Key Infrastructure, Online Social Networks, Location, in terms of storage space and power consumption based on the Mobility frequency of mobile device encounters.
    [Show full text]
  • Analysis of Key Management in Matrix
    Bachelor thesis Computing Science Radboud University Analysis of key management in Matrix Author: First supervisor/assessor: Floris Hendriks Prof. J.J.C. Daemen s4749294 [email protected] Second supervisor: Dr. B.J.M. Mennink [email protected] Second assessor: Dr. C.E. Dobraunig [email protected] January 17, 2020 Abstract This thesis presents an analysis of Matrix’s key management. Matrix is an end-to-end encrypted and decentralised application layer proto- col, developed by The Matrix.org Foundation C.I.C. The protocol is used, among other applications, to end-to-end encrypt messages in a decen- tralised chat system. To date, Matrix is not equipped with a clear and well-described overview on how keys enable end-to-end encryption in a decentralised network. This thesis therefore describes how keys in Ma- trix are established, used, stored, exchanged and verified. Moreover, the analysis also explores the limitations of Matrix’s key management and potential improvements. Contents 1 Introduction3 1.1 Research questions........................5 1.2 Structure..............................6 2 Preliminaries7 2.1 Data formats used in Matrix...................7 2.2 Security principles........................8 2.2.1 Forward secrecy......................8 2.2.2 Backward secrecy.....................8 2.2.3 Deniability.........................8 2.2.4 Confidentiality.......................8 2.2.5 Integrity..........................9 2.2.6 Authentication.......................9 2.3 Cryptographic primitives used in Matrix............9 2.3.1 Cryptographic hash functions..............9 2.3.2 HMAC............................9 2.3.3 HKDF............................ 10 2.3.4 Cryptographic ratchets.................. 10 2.3.5 Curve25519........................ 11 2.3.6 EdDSA and Ed25519..................
    [Show full text]
  • The GNU Privacy Handbook the GNU Privacy Handbook Copyright © 1999 by the Free Software Foundation
    The GNU Privacy Handbook The GNU Privacy Handbook Copyright © 1999 by The Free Software Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front- Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please direct questions, bug reports, or suggestions concerning this manual to the maintainer, Mike Ashley (<jash- [email protected]>). When referring to the manual please specify which version of the manual you have by using this version string: $Name: v1_1 $. Contributors to this manual include Matthew Copeland, Joergen Grahn, and David A. Wheeler. J Horacio MG has translated the manual to Spanish. Table of Contents 1. Getting Started................................................................................................................................................ 6 Generating a new keypair............................................................................................................................ 6 Generating a revocation certificate .................................................................................................... 8 Exchanging keys ......................................................................................................................................... 8 Exporting a public key......................................................................................................................
    [Show full text]
  • Cryptography and Evidence
    UCAM-CL-TR-780 Technical Report ISSN 1476-2986 Number 780 Computer Laboratory Cryptography and evidence Michael Roe May 2010 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2010 Michael Roe This technical report is based on a dissertation submitted April 1997 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Clare College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Summary The invention of public-key cryptography led to the notion that cryptographically protected mes- sages could be used as evidence to convince an impartial adjudicator that a disputed event had in fact occurred. Information stored in a computer is easily modified, and so records can be falsified or retrospectively modified. Cryptographic protection prevents modification, and it is hoped that this will make cryptographically protected data acceptable as evidence. This usage of cryptogra- phy to render an event undeniable has become known as non-repudiation. This dissertation is an enquiry into the fundamental limitations of this application of cryptography, and the disadvan- tages of the techniques which are currently in use. In the course of this investigation I consider the converse problem, of ensuring that an instance of communication between computer systems leaves behind no unequivocal evidence of its having taken place. Features of communications protocols that were seen as defects from the standpoint of non-repudiation can be seen as benefits from the standpoint of this converse problem, which I call “plausible deniability”.
    [Show full text]
  • User Manual V.1.3 (“NTRU Release”) 1 What Is Goldbug?
    Secure Instant Messenger User Manual v.1.3 (“NTRU Release”) http://goldbug.sf.net 1 What is GoldBug? GoldBug is a secure Instant Messenger. You can be sure with using GoldBug (GB), that no third party can look into your chat communication. Private user-to-user communication remains private. GoldBug therefore uses strong multi-encryption with different layers of modern encryption technologies of well known and revised crypto libraries (like libgcrypt (GnuPG) and OpenSSL). For example it generates more than 8 public / private encryption keys based on RSA or NTRU or ElGamal. The app offers as well decentral and encrypted Email and decentral public E*IRC-Chat. As in every Messenger, you can share and transfer files. With tools like Rosetta Cryptopad and/or the File-Encryption tool you can convert text and files into ciphertext. 2 Why encryption matters: Today mostly every WIFI is protected with a password. In a few years as well every plaintext message or email to friends over the internet will be encrypted too. It is not a question to have something to hide or not, • it is a question to control by yourself the security of your communications - or having it controled by others. • It‘ s a question of free thinking and • taking away the presumption of innocence.*) • Democracy requires the thinking and debate of alternatives in private and public. "The question is not 'do you have something to hide?' Strong-Multi-Encryption ensures the The question is whether we control declaration of human rights in broad constitutional consensi and is a digital or they controls us." - Oliver Stone self-defense, everyone needs to learn http://www.youtube.com/watch?v=0U37hl0n9mY and utilize.
    [Show full text]
  • Improving PGP Web of Trust Through the Expansion of Trusted
    2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Improving PGP Web of Trust through the Expansion of Trusted Neighborhood Guibing Guo, Jie Zhang, and Julita Vassileva∗ School of Computer Engineering, Nanyang Technological University, Singapore ∗Department of Computer Science, University of Saskatchewan, Canada {[email protected]} Abstract—PGP Web of Trust where users can sign digital In this paper, we first modify PGP Web of Trust to accept signatures on public key certificates of other users has been negative feedbacks in signatures from users indicating that successfully applied in securing emails and files transmitted over a certificate is believed to be inauthentic. Accordingly, the the Internet. However, its rigorous restrictions on utilizable trust relationships and acceptable signatures limit its performance. In way of verifying the authenticity of a certificate based on this paper, we first make some modification and extension to provided feedbacks is also modified. We then extend PGP PGP Web of Trust by relaxing those constraints. In addition, we Web of Trust by also considering indirect trust relationships propose a novel method to further expand trusted neighborhood of users. Indirect trust is computed using the concept of trust of users by merging the signatures of the trusted neighbors and propagation [2]. In this way, the pool of other users trusted by finding the similar users based on the merged signature set. Confirmed by the experiments carried out in different simulated a user (called trusted neighborhood) may get expanded. real-life scenarios, our method applied to both the modified and More importantly, we propose a novel method to further extended PGP methods can improve their performance.
    [Show full text]
  • Web Security How Email Works
    Email Security Web Security How Email works Some terminology: I MUA (Mail User Agent) - programs used for retrieving, reading and managing e-mail. I MSA (Mail Sending Agent) - programs that receive emails from MUA's who then forward them to MTA's. - will check an email's format and quickly report errors to the author (e.g., an empty To field etc.) I MTA (Mail Transfer Agent) - programs responsible for transmitting email messages from sender to recipient. I MDA (Mail Delivery Agent) - programs responsible for delivering email from an MTA to a local recipient's mailbox. Web Security SMTP (Simple Mail Transfer Protocol): a simple text-based application-layer protocol used for sending e-mail. Courtesy of Wikipedia Web Security POP (Post Office Protocol) I designed to support clients with dial-up connections I client connects to their MDA, downloads any new messages, deletes those messages from the server, disconnects IMAP (Internet Message Access Protocol) I allows clients to connect to mail server and maintain persistent connection I clients can search for messages, etc. Web Security Lack of confidentiality I subject to packet sniffing I SOLN: encryption No built in authentication I the "FROM" portion of the email can be spoofed; it can appear that the email came from someone you trust I SOLN: use digital signatures Email Security Issues Suggestions? Web Security Email Security Issues Suggestions? Lack of confidentiality I subject to packet sniffing I SOLN: encryption No built in authentication I the "FROM" portion of the email can be spoofed; it can appear that the email came from someone you trust I SOLN: use digital signatures Web Security Encryption at the Transport Layer - Use SSL/TLS protocols between each client-server pairs - e.g., between MUA and local MTA, sender and recipient MTA's, recipient MTA and MDA, MDA and recipient.
    [Show full text]
  • Multi-Device Secure Instant Messaging
    SoK: Multi-Device Secure Instant Messaging Antonio Dimeo, Felix Gohla, Daniel Goßen, Niko Lockenvitz {antonio.dimeo, felix.gohla, daniel.gossen, niko.lockenvitz}@student.hpi.de Hasso Plattner Institute, University of Potsdam April 17, 2021 Abstract The secure multi-device instant messaging ecosystem is diverse, varied, and under- represented in academia. We create a systematization of knowledge which focuses on the challenges of multi-device messaging in a secure context and give an overview of the current situation in the multi-device setting. For that, we analyze messenger documentation, white papers, and research that deals with multi-device messaging. This includes a detailed description of different patterns for data transfer between devices as well as device management, i.e. how clients are cryptographically linked or unlinked to or from an account and how the initial setup can be implemented. We then evaluate different instant messengers with regard to relevant criteria, e.g. whether they achieve specific security, usability, and privacy goals. In the end, we outline interesting areas for future research. Contents 1 Introduction3 1.1 Group Messaging vs. Multi-Device Messaging............... 4 1.2 Methodology.................................. 4 2 Multi-Device Messaging7 2.1 Context...................................... 7 2.2 Transferring Data Between Different Devices of One User........ 7 2.2.1 Storing Data on a Server........................ 8 2.2.2 Using Messages to Exchange Data.................. 9 2.3 Transferring Data to a Different User..................... 11 2.3.1 Without End-to-end Encryption................... 11 2.3.2 End-to-end Encryption With Shared Group Key.......... 13 2.3.3 End-to-end Encryption Per Recipient...............
    [Show full text]