General Disclaimer One Or More of the Following Statements May Affect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vacuum Systems
EE-527: MicroFabrication Vacuum Systems R. B. Darling / EE-527 / Winter 2013 Outline • Vacuum principles • Vacuum pumps • Vacuum systems • Vacuum instrumentation • Vacuum materials and components R. B. Darling / EE-527 / Winter 2013 Uses of Vacuum in Microfabrication Rough Vacuum High Vacuum Ultra-High Vacuum wafer chucks evaporation surface analysis load locks ion implantation molecular beam epitaxy (MBE) sputtering reactive ion etching (RIE) low pressure chemical vapor deposition (LPCVD) R. B. Darling / EE-527 / Winter 2013 Units of Pressure Measurement • 1 atmosphere = – 760 mm Hg = 760 torr – 760,000 millitorr or microns – 29.9213 in. Hg – 14.6959 psi – 1.01325 bar 760 mm Hg – 1013.25 millibar 33.93 ft H2O – 101,325 pascals (Pa) – 407.189 in. H2O – 33.9324 ft. H2O 1 Pascal = 1 N/m2 1 torr = 1 mm Hg 1 micron = 1 m Hg R. B. Darling / EE-527 / Winter 2013 Vacuum Ranges • Low or Rough Vacuum (LV) – 760 to 1 torr • Medium Vacuum (MV) –1 to 10-3 torr • High Vacuum (HV) –10-3 to 10-7 torr • Ultra-High Vacuum (UHV) –10-7 to 10-12 torr R. B. Darling / EE-527 / Winter 2013 Partial Pressures of Gases in Air at STP Gas Symbol Volume Percent Partial Pressure, Torr Nitrogen N2 78 593 Oxygen O2 21 159 Argon Ar 0.93 7.1 Carbon Dioxide CO2 0.03 0.25 Neon Ne 0.0018 1.4 x 10-2 Helium He 0.0005 4.0 x 10-3 Krypton Kr 0.0001 8.7 x 10-4 -4 Hydrogen H2 0.00005 4.0 x 10 Xenon Xe 0.0000087 6.6 x 10-5 Water H2O Variable 5 to 50, typ. -
Vacuum Systems
Uses of Vacuum in Microfabrication Rough Vacuum High Vacuum Ultra-High Vacuum wafer chucks evaporation surface analysis load locks ion implantation molecular beam epitaxy (MBE) sputtering Fundamentals of Micromachining reactive ion etching (RIE) low pressure chemical vapor deposition (LPCVD) Vacuum Systems Units of Pressure Measurement Outline • 1 atmosphere = • Vacuum principles – 760 mm Hg = 760 torr • Vacuum pumps – 760,000 millitorr or microns • Vacuum materials and components – 29.9213 in. Hg • Vacuum instrumentation – 14.6959 psi • Vacuum systems – 1.01325 bar 760 mm Hg – 1013.25 millibar 33.93 ft H2O – 101,325 pascals (Pa) – 407.189 in. H2O – 33.9324 ft. H2O 1 Pascal = 1 N/m2 1 Torr = 1 mm Hg 1 micron = 1 µm Hg Ideal Gas Law - 1 Vacuum Ranges • V = volume of enclosure • Low or Rough Vacuum (LV) • N = number of molecules – 760 to 10-3 torr • Nm = number of moles = N/NA • n = particle density = N/V • High Vacuum (HV) -3 -8 • P = pressure –10 to 10 torr • T = absolute temperature • Ultra-High Vacuum (UHV) -23 • kB = Boltzmann’s constant = 1.381 x 10 J/K –10-8 to 10-12 torr 23 • NA = Avogadro’s number = 6.022 x 10 particles/mole • R = Gas constant = NAkB = 8.315 J/mole-K = PV Nm RT = PV NkBT = P nkBT Ideal Gas Law - 2 Partial Pressures of Gases in Air at STP • Historical Laws: Gas Symbol Volume Percent Partial Pressure, Torr – Boyle’s Law: P1V1 = P2V2 at constant T Nitrogen N2 78 593 V /T = V /T P – Charles’ Law: 1 1 2 2 at constant Oxygen O2 21 159 Argon Ar 0.93 7.1 – Gay-Lussac’s Law: V = V0(1 + T/273) Carbon Dioxide CO2 0.03 0.25 Neon Ne 0.0018 1.4 x 10-2 Helium He 0.0005 4.0 x 10-3 Krypton Kr 0.0001 8.7 x 10-4 -4 Hydrogen H2 0.00005 4.0 x 10 Xenon Xe 0.0000087 6.6 x 10-5 Water H2O Variable 5 to 50, typ. -
Vacuum Diffusion Pumps: Description of Geometry, Operation Principals, Design Characteristics, Specifications and Simulation Approaches
UNIVERSITY OF THESSALY SCHOOL OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING Diploma Thesis Vacuum diffusion pumps: description of geometry, operation principals, design characteristics, specifications and simulation approaches by KATSAGEORGIOU ARETI Submitted for the Partial Fulfillment of the Requirements for the Degree of Diploma in Mechanical Engineering 2017 Institutional Repository - Library & Information Centre - University of Thessaly 30/09/2018 05:22:49 EEST - 137.108.70.6 Institutional Repository - Library & Information Centre - University of Thessaly 30/09/2018 05:22:49 EEST - 137.108.70.6 © 2017 Katsageorgiou Areti The approval of the Diploma Thesis by the Department of Mechanical Engineering of the University of Thessaly does not imply acceptance of the author’s opinions. (Law 5343/32. Article 202, paragraph 2). [i] Institutional Repository - Library & Information Centre - University of Thessaly 30/09/2018 05:22:49 EEST - 137.108.70.6 Εγκρίθηκε από τα Μέλη της Τριμελούς Εξεταστικής Επιτροπής: Πρώτος Εξεταστής Δρ. Βαλουγεώργης Δημήτριος (Επιβλέπων) Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας Δεύτερος Εξεταστής Δρ. Πελεκάσης Νικόλαος Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας Τρίτος Εξεταστής Δρ. Νάρης Στέργιος Ερευνητικό προσωπικό, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας [ii] Institutional Repository - Library & Information Centre - University of Thessaly 30/09/2018 05:22:49 EEST - 137.108.70.6 Certified by the member of the Thesis Committee: 1st member Dr. Valougeorgis Dimitrios (Supervisor) Professor, Department of Mechanical Engineering, University of Thessaly 2nd member Dr. Pelekasis Nikolaos Professor, Department of Mechanical Engineering, University of Thessaly 3rd member Dr. Naris Steryios Research staff, Department of Mechanical Engineering, University of Thessaly [iii] Institutional Repository - Library & Information Centre - University of Thessaly 30/09/2018 05:22:49 EEST - 137.108.70.6 Acknowledgements I would like to express my appreciation and gratitude to my supervisor Prof. -
Support Material) Content
VACUUM TECHNOLOGY PRACTICE COURSE (SUPPORT MATERIAL) CONTENT INTRODUCTION…………………………………………………………………………… 3 1. CONCEPT OF VACUUM………………………………………………………………. 4 1.1. Gas laws…………………………………………………………………………….. 4 1.2. Kinetic theory of gases……………………………………………………………… 5 1.3. Gas flow…………………………………………………………………………….. 10 1.4. Pressure of gas, levels of vacuum, vacuum units…………………………………… 12 2. VACUUM SYSTEMS CALCULATION……………………………………………….. 15 3. VACUUM SYSTEMS PROJECTION………………………………………………….. 16 3.1. Materials for vacuum systems……………………………………………………… 16 3.2. Gas load sources……………………………………………………………………. 22 3.3. Absorption, diffusion, and outgassing……………………………………………… 23 3.4. Elements of vacuum systems……………………………………………………….. 26 3.5. Throughput capacity of vacuum systems elements………………………………… 26 4. CLEANING……………………………………………………………………………… 35 5. VACUUM PUMPS……………………………………………………………………… 43 5.1. Mechanical pumps………………………………………………………………….. 43 5.2. Condensers………………………………………………………………………….. 47 5.3. Jet and diffusion pumps…………………………………………………………….. 47 5.4. Molecular and turbomolecular pumps……………………………………………… 52 5.5. Sorption pumps……………………………………………………………………... 57 5.6. Cryotechnology and cryopumps……………………………………………………. 67 6. VACUUM MEASUREMENT………………………………………………………….. 78 6.1. Mechanical vacuum gauges………………………………………………………… 78 6.2. Spinning rotor gauges………………………………………………………………. 84 6.3. Direct electric pressure measuring transducers……………………………………... 85 6.4. Thermal conductivity vacuum gauges……………………………………………… 85 6.5. Thermal mass flowmeters…………………………………………………………... 89 6.6. Ionization