UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Instrumentation for Radio Interferometers with Antennas on a Regular Grid Permalink https://escholarship.org/uc/item/5tj476tn Author Gorthi, Deepthi Bhavana Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Instrumentation for Radio Interferometers with Antennas on a Regular Grid by Deepthi Bhavana Gorthi A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Astrophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Aaron Parsons, Chair Professor Jessica Lu Professor Uros Seljak Spring 2021 Instrumentation for Radio Interferometers with Antennas on a Regular Grid Copyright 2021 by Deepthi Bhavana Gorthi 1 Abstract Instrumentation for Radio Interferometers with Antennas on a Regular Grid by Deepthi Bhavana Gorthi Doctor of Philosophy in Astrophysics University of California, Berkeley Professor Aaron Parsons, Chair In the past two decades, a rebirth of interest in low-frequency radio astronomy, for 21 cm tomography of the Epoch of Reionization, has given rise to a new class of radio interferom- eters with N 100 antennas. The availability of low-noise receivers that do not require cryogenic cooling has driven down the cost of antennas, making it affordable to build sensi- tivity with numerous small antennas rather than traditional large dish structures. However, the computational- and storage-costs of such radio arrays, determined by the (N 2) scaling of visibility products that need to be computed for calibration and imaging, becomeO propor- tional to the cost of the array itself and drive up the overall cost of the radio telescope. When antennas in the array are built on a regular grid, direct-imaging methods based on spatial Fourier transforms of the array can be exploited to avoid computing the intermediate visibility matrices that drive the unfavorable scaling. However, such methods rely on the availability of calibrated antenna voltages which are themselves difficult to obtain without using visibility matrices. In this thesis, I explore two real-time calibration strategies that can operate on subsets of visibility matrices, which can be computed without compromising on the (N log N) scaling of direct-imaging systems. O For more general radio interferometer layouts, baseline-dependent averaging with fringe stop- ping can be used to decrease the data rate of visibility products. While the computational cost is nearly unchanged, this technique can decrease the data volume of cross-correlation products, making it more tenable to store, process, and calibrate the output of the corre- lator. In this thesis, I describe the entire signal processing pipeline built for the Hydrogen Epoch of Reionization Array (HERA), which is currently being commissioned for detecting and characterizing the power spectrum of neutral hydrogen in the redshift range 5 < z < 28. The HERA correlator implements both fringe stopping and baseline dependent averaging to bring down the data rate from nearly 1 Tbps to 15 Gbps. i To my parents and brother, For tolerating my obsession with space and being my first audience. ii Contents Contents ii List of Figuresv List of Tables xiii 1 Introduction1 1.1 Epoch of Reionization..............................1 1.1.1 Ly-α forest probes............................3 1.1.2 Evidence from CMBR..........................5 1.2 Neutral Hydrogen.................................6 1.2.1 Physics of 21 cm..............................7 1.2.2 Spin Temperature.............................7 1.2.3 Global Signal Model........................... 11 1.2.4 Power Spectrum.............................. 13 1.3 Radio Interferometry............................... 16 1.3.1 Radio Antennas.............................. 17 1.3.2 Two-element Interferometer....................... 18 1.3.3 Visibility Equation............................ 19 1.3.4 Beam Chromaticity............................ 22 1.4 Measuring the 21 cm Power Spectrum...................... 24 1.4.1 Delay Transform............................. 25 1.4.2 Foreground Contamination........................ 26 1.4.3 Experiments and Current Status.................... 31 1.5 Correlators.................................... 33 1.5.1 Design Architectures........................... 34 1.5.2 Hardware Platforms........................... 35 1.6 FFT Correlators................................. 38 1.6.1 Theoretical Motivation.......................... 39 1.6.2 Calibration................................ 41 1.7 Hydrogen Epoch of Reionization Array..................... 43 1.8 Thesis Layout................................... 46 iii 2 Software FFT Correlator 48 2.1 FPGA-based Channel Selector.......................... 50 2.2 File Writing Pipeline............................... 55 2.3 Observing Runs.................................. 58 2.4 Analysis and Results............................... 62 2.4.1 Data from Green Bank.......................... 62 2.4.2 Data from South Africa......................... 66 3 Reduced Redundant-Baseline Calibration 68 3.1 Metrics for Evaluating Calibration Methods.................. 69 3.1.1 Uncertainty in Antenna Gains...................... 72 3.1.2 Scatter in Visibilities of Redundant Baselines............. 73 3.1.3 Simulation................................. 74 3.2 Low-Cadence Calibration............................. 76 3.2.1 Scaling in Gain Variance with Integration Time............ 77 3.2.2 Scaling in Gain Variance with an (N log N) Calibrator....... 77 3.3 Subset Redundant Calibration..........................O 80 3.3.1 Brief Discussion on Using Short Baselines............... 81 3.3.2 Degeneracy Criterion........................... 81 3.3.3 Scaling in Gain Variance with Number of Baselines.......... 82 3.3.4 Covariance in Estimated Gains..................... 84 3.3.5 Scaling in Gain Variance with an (N log N) Calibrator....... 87 3.4 Comparing the two Calibration Schemes....................O 89 3.4.1 Scaling in Gain Variance......................... 90 3.4.2 Variance in Calibrated Redundant Visibilities............. 91 3.4.3 Bias in Estimated Variables....................... 94 2 3.4.4 χr of Estimated Gains and Visibilities................. 96 4 HERA Correlator System 99 4.1 Architecture Overview.............................. 100 4.2 Design Specifications............................... 102 4.2.1 Frequency Resolution........................... 102 4.2.2 Integration time.............................. 103 4.2.3 Fringe Rotation.............................. 104 4.2.4 Baseline Dependent Averaging...................... 104 4.2.5 Phase Switching.............................. 105 4.3 F-engine...................................... 106 4.3.1 SNAP Boards............................... 106 4.3.2 Clocking.................................. 108 4.3.3 FPGA Design............................... 108 4.3.4 Firmware................................. 113 4.3.5 Control Software............................. 113 iv 4.4 Networking.................................... 117 4.5 X-engine...................................... 119 4.5.1 Hashpipe................................. 119 4.5.2 Cross-correlation Pipeline........................ 120 4.5.3 Data Acquisition............................. 125 4.6 Preliminary Results................................ 125 5 Conclusion 129 Bibliography 131 v List of Figures 1.1 Artist's impression of the evolution of the Universe in the standard cosmologi- cal paradigm. The first luminous structures are theoretically expected to have formed at a definite time, and for a finite period called the Epoch of Reionization. Observations of this time span could answer many questions about the evolution of our Universe from a homogeneous isotropic medium at recombination to the hierarchical structures we see today. (Credit: NAOJ)...............2 1.2 Spectra of QSOs located in the redshift range of the epoch of reionization, bor- rowed from Fan et al. (2006). The Gunn-Peterson trough, evident in the spectra at redshifts of z 6 gradually disappears and is replaced by the Ly-α forest at lower redshifts, indicating∼ the presence of large quantities of neutral hydrogen at high redshifts that disappear over time........................4 1.3 Electronic transitions in a hydrogen atom that produce the Wouthuysen-Field effect, or a change in the spin-state of the atom due to Ly-α coupling (solid lines). The dotted transitions are permissible but do not result in a change in spin state. The quantum orbital notation nFLJ is explained in the text......9 1.4 Evolution of the brightness temperature of the sky-averaged 21 cm signal, taken from Pritchard and Loeb (2012, Figure 1)...................... 11 1.5 Results from the Experiment to Detect the Global EoR Signature (EDGES; Bow- man et al. 2018) showing an absorption profile that is 50% higher in amplitude than theoretically possible. The different lines show the∼ best-fit profile obtained using different hardware configurations........................ 13 1.6 Figure illustrating the relationship between spherically averaged coordinates and 2 2 cylindrical coordinates, given by k = k? + kk. Panel (a): A simple mock power spectrum plotted against sphericallyq averaged k-modes. Panel (b): The same power spectrum profile, plotted as a color-map against cylindrically averaged coordinates....................................... 15 1.7 In a simple two element interferometer, the small difference in the arrival
Recommended publications
  • Aaron R. Parsons Campbell Hall 601, Dept
    1/4 Curriculum Vitae Aaron R. Parsons Campbell Hall 601, Dept. of Astronomy (510) 406-4322 University of California, Berkeley [email protected] Berkeley, CA 94720 USA http://bit.ly/aaronparsons Education University of California, Berkeley Ph.D., Astrophysics. Advisor: Donald C. Backer Dec. 2009 M.A., Astrophysics Sept. 2006 Harvard University, Double B.A., Physics and Mathematics, cum laude June, 2002 Professional Positions Assistant Professor 2011- Dept. of Astronomy, U. California, Berkeley NSF Astronomy and Astrophysics Postdoctoral Fellow 2009-2011 Dept. of Astronomy, U. California, Berkeley Charles H. Townes Postdoctoral Honorary Fellow 2009-2011 Space Sciences Laboratory, U. California, Berkeley NAIC Pre-Doctoral Researcher 2007-2009 Arecibo Observatory, Puerto Rico. Local Supervisor: C. Salter Graduate Student Researcher 2004-2009 Dept. of Astronomy, U. California, Berkeley. Advisor: D. Backer Junior Development Engineer 2002-2004 Space Sciences Laboratory, U. California, Berkeley. Supervisor: D. Werthimer Honors and Awards Mary Elizabeth Uhl Prize for Outstanding Scholarly Achievement 2009 International Union of Radio Science (URSI) Young Scientist Award 2005 UC Berkeley Space Sciences Summer Fellowship 2005 Harvard College Scholarship for Academic Excellence 2002 Harvard University: four times Deans List 1998-2002 Robert C. Byrd Honors Scholarship 1998 Julius Poole Scholarship 1998 Elk’s Scholarship 1998 Professional Activities Center for Astronomy Signal Processing and Electronics Research (CASPER) advisory board member,
    [Show full text]
  • Astro2020 Science White Paper Cosmology with the Highly Redshifted 21 Cm Line
    Astro2020 Science White Paper Cosmology with the Highly Redshifted 21 cm Line Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects 3Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Adrian Liu Institution: McGill University Email: [email protected] Phone: (514) 716-0194 Co-authors: (names and institutions) James Aguirre (University of Pennsylvania), Joshua S. Dillon (UC Berkeley), Steven R. Furlanetto (UCLA), Chris Carilli (National Radio Astronomy Observatory), Yacine Ali-Haimoud (New York University), Marcelo Alvarez (University of California, Berkeley), Adam Beardsley (Arizona State University), George Becker (University of California, Riverside), Judd Bowman (Arizona State University), Patrick Breysse (Canadian Institute for Theoretical Astrophysics), Volker Bromm (University of Texas at Austin), Philip Bull (Queen Mary University of London), Jack Burns (University of Colorado Boulder), Isabella P. Carucci (University College London), Tzu-Ching Chang (Jet Propulsion Laboratory), Hsin Chiang (McGill University), Joanne Cohn (University of California, Berkeley), David DeBoer (University of California, Berkeley), Cora Dvorkin (Harvard University), Anastasia Fialkov (Sussex University), Nick Gnedin (Fermilab), Bryna Hazelton (University of Washington), Daniel Jacobs (Arizona State University), Marc Klein Wolt (Radboud University
    [Show full text]
  • Cosmology with the Highly Redshifted 21 Cm Line
    Astro2020 Science White Paper Cosmology with the Highly Redshifted 21 cm Line Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects 3Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Adrian Liu Institution: McGill University Email: [email protected] Phone: (514) 716-0194 Co-authors: (names and institutions) James Aguirre (University of Pennsylvania), Joshua S. Dillon (UC Berkeley), Steven R. Furlanetto (UCLA), Chris Carilli (National Radio Astronomy Observatory), Yacine Ali-Haimoud (New York University), Marcelo Alvarez (University of California, Berkeley), Adam Beardsley (Arizona State University), George Becker (University of California, Riverside), Judd Bowman (Arizona State University), Patrick Breysse (Canadian Institute for Theoretical Astrophysics), Volker Bromm (University of Texas at Austin), Philip Bull (Queen Mary University of London), Jack Burns (University of Colorado Boulder), Isabella P. Carucci (University College London), Tzu-Ching Chang (Jet Propulsion Laboratory), Hsin Chiang (McGill University), Joanne Cohn (University of California, Berkeley), David DeBoer (University of California, Berkeley), Cora Dvorkin (Harvard University), Anastasia Fialkov (Sussex University), Nick Gnedin (Fermilab), Bryna Hazelton (University of Washington), Daniel Jacobs (Arizona State University), Marc Klein Wolt (Radboud University
    [Show full text]
  • Empirical Covariance Modeling for 21 Cm Power Spectrum Estimation: a Method Demonstration and New Limits from Early Murchison Widefield Array 128-Tile Data
    Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Dillon, Joshua S., et al. "Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data." Phys. Rev. D 91, 123011 (June 2015). © 2015 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevD.91.123011 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/97502 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 91, 123011 (2015) Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data Joshua S. Dillon,1,2,* Abraham R. Neben,1,2 Jacqueline N. Hewitt,1,2 Max Tegmark,1,2 N. Barry,3 A. P. Beardsley,3 J. D. Bowman,4 F. Briggs,5,6 P. Carroll,3 A. de Oliveira-Costa,1,2 A. Ewall-Wice,1,2 L. Feng,1,2 L. J. Greenhill,7 B. J. Hazelton,3 L. Hernquist,7 N. Hurley-Walker,8 D. C. Jacobs,4 H. S. Kim,9,6 P. Kittiwisit,4 E. Lenc,10,6 J. Line,9,6 A.
    [Show full text]
  • Instrumentation for Radio Interferometers with Antennas on a Regular Grid by Deepthi Bhavana Gorthi a Dissertation Submitted In
    Instrumentation for Radio Interferometers with Antennas on a Regular Grid by Deepthi Bhavana Gorthi A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Astrophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Aaron Parsons, Chair Professor Jessica Lu Professor Uros Seljak Spring 2021 Instrumentation for Radio Interferometers with Antennas on a Regular Grid Copyright 2021 by Deepthi Bhavana Gorthi 1 Abstract Instrumentation for Radio Interferometers with Antennas on a Regular Grid by Deepthi Bhavana Gorthi Doctor of Philosophy in Astrophysics University of California, Berkeley Professor Aaron Parsons, Chair In the past two decades, a rebirth of interest in low-frequency radio astronomy, for 21 cm tomography of the Epoch of Reionization, has given rise to a new class of radio interferom- eters with N 100 antennas. The availability of low-noise receivers that do not require cryogenic cooling has driven down the cost of antennas, making it affordable to build sensi- tivity with numerous small antennas rather than traditional large dish structures. However, the computational- and storage-costs of such radio arrays, determined by the (N 2) scaling of visibility products that need to be computed for calibration and imaging, becomeO propor- tional to the cost of the array itself and drive up the overall cost of the radio telescope. When antennas in the array are built on a regular grid, direct-imaging methods based on spatial Fourier transforms of the array can be exploited to avoid computing the intermediate visibility matrices that drive the unfavorable scaling.
    [Show full text]
  • Instrumentation for Wide Bandwidth Radio Astronomy
    Instrumentation for Wide Bandwidth Radio Astronomy Thesis by Glenn Evans Jones In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2010 (Defended September 25, 2009) ii c 2010 Glenn Evans Jones All Rights Reserved iii To my family. iv Acknowledgements Since I was very young I have been fascinated by radio telescopes, but despite a keen interest in other areas of electronics, I never learned how they were used until I began working with my research advisor, Sandy Weinreb. As a fellow electronics and technology enthusiast, I cannot imagine a better person to introduce me to the field of radio astronomy which has steadily become my career. From the very beginning, he has been a tireless advocate for me while sharing his broad experience across the gamut of radio astronomy instrumentation and observations. One of the most important ways in which Sandy has influenced me professionally is by pursuing every available opportunity to introduce me to members of the radio astronomy community. I also very much appreciate the support provided by my academic advisor, Dave Rutledge. Dave provided a wide range of useful suggestions and encouragement during group meetings, and looked out for me from the very beginning. Each of the other members of my thesis committee also deserves special thanks apart from my gratitude to them for serving on the committee. P.P. Vaidyanathan introduced me to digital signal processing and his clear, insightful lectures helped to inspire my interest in the field. Tony Read- head's courses on radio astronomy instrumentation and radiative processes significantly improved my understanding of the details of radio astronomy.
    [Show full text]
  • Observing the Epoch of Reionization: Power Spectrum Limits and Commissioning Next Generation 21Cm Experiments
    Observing the Epoch of Reionization: Power Spectrum Limits and Commissioning Next Generation 21 cm Experiments By Zaki Shiraz Ali A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Astrophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Aaron Parsons, Chair Professor Carl Heiles Professor Adrian Lee Professor Chung-Pei Ma Summer 2018 Observing the Epoch of Reionization: Power Spectrum Limits and Commissioning Next Generation 21 cm Experiments Copyright 2018 by Zaki Shiraz Ali 1 Abstract Observing the Epoch of Reionization: Power Spectrum Limits and Commissioning Next Generation 21 cm Experiments by Zaki Shiraz Ali Doctor of Philosophy in Astrophysics University of California, Berkeley Professor Aaron Parsons, Chair As one of the last unobserved frontiers in the Universe, the Epoch of Reionization (EoR) marks the period when the Universe transitioned from a neutral state to an ionized state, marking the last global phase change. Understanding how the EoR evolved over time and when it occurred will provide evidence for the nature of the first luminous sources of the Universe. Specifically, we’ll be able to answer questions such as what were the first galaxies like in terms of their luminosities, masses, and spectral energy distributions? Were they similar to todays galaxies? How did they form? How were they spatially distributed? These questions and many others begin to probe the early times of galaxy formation, a field in need of observations of the earliest galaxies. In the first chapter, I provide an introduction to 21 cm cosmology, which uses the 21 cm line transition from neutral hydrogen to study the evolution of the Universe.
    [Show full text]
  • Measuring the Gravitational Wave Background Using Precision Pulsar Timing by Paul B. Demorest BA
    Measuring the Gravitational Wave Background using Precision Pulsar Timing by Paul B. Demorest B.A. (University of California, Berkeley) 2000 M.A. (University of California, Berkeley) 2002 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Donald Backer, Co-chair Professor Steven Boggs, Co-chair Professor William Holzapfel Professor Carl Heiles Spring 2007 The dissertation of Paul B. Demorest is approved: Co-chair Date Co-chair Date Date Date University of California, Berkeley Spring 2007 Measuring the Gravitational Wave Background using Precision Pulsar Timing Copyright 2007 by Paul B. Demorest 1 Abstract Measuring the Gravitational Wave Background using Precision Pulsar Timing by Paul B. Demorest Doctor of Philosophy in Physics University of California, Berkeley Professor Donald Backer, Co-chair Professor Steven Boggs, Co-chair We investigate the possibility of using high precision timing measurements of radio pulsars to constrain or detect the stochastic gravitational wave background (GWB). Improved algorithms are presented for more accurately determining the pulse times of arrival at Earth and characterizing pulse profile shape variation. Next, we describe the design and construction of a new set of pulsar backends based on clusters of standard personal computers. These machines, the Astronomy Signal Processors (ASPs), coherently correct the pulse broadening caused by interstellar plasma dispersion. Since they are based in software, they are inherently more flexible than previous generations of pulsar data recorders. In addition, they provide increased bandwidth and quantization accuracy. We apply these methods to 2.5 years worth 2 of millisecond pulsar data recorded with the ASP systems at the Arecibo and Green Bank Telescopes, and present pulse profiles, dispersion measure variation, and timing model parameters derived from this data.
    [Show full text]
  • Cosmic Dawn and Reionization: Astrophysics in the Final Frontier
    Astro2020 Science White Paper Cosmic Dawn and Reionization: Astrophysics in the Final Frontier Thematic Areas: ☐ Planetary Systems ☐ Star and Planet Formation ☐Formation and Evolution of Compact Objects ☐ Cosmology and Fundamental Physics ☐Stars and Stellar Evolution ☐Resolved Stellar Populations and their Environments ☒Galaxy Evolution ☐Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Asantha Cooray Institution: University of California, Irvine Email: [email protected] Phone: 949 824 6832 Co-authors: (names and institutions) James Aguirre (Penn), Yacine Ali-Haimoud (NYU), Marcelo Alvarez (Berkeley), Phil Appleton (Caltech), Lee Armus (Caltech), George Becker (Riverside), Jamie Bock (Caltech/JPL), Rebecca Bowler (Oxford), Judd Bowman (ASU), Matt Bradford (JPL), Patrick Breysse (CITA), Volker Bromm (Austin), Jack Burns (Colorado), Karina Caputi (Kapteyn), Marco Castellano (INAF), Tzu-Ching Chang (JPL), Ranga Chary (Caltech), Hsin Chiang (McGill), Joanne Cohn (Berkeley), Chris Conselice (Nottingham), Jean-Gabriel Cuby (LAM), Frederick Davies (UCSB), Pratika Dayal (Kapteyn), Olivier Dore (JPL), Duncan Farrah (Hawaii), Andrea Ferrara (Pisa), Steven Finkelstein (UT Austin), Steven Furlanetto (UCLA), Bryna Hazelton (UW), Caroline Heneka (SNS), Anne Hutter (Kapteyn), Daniel Jacobs (ASU), Leon Koopmans (Kapteyn), Ely Kovetz (Ben-Gurion), Paul La Piante (Penn), Olivier Le Fevre (LAM), Adrian Liu (McGill), Jingzhe Ma (UCI), Yin-Zhe Ma (KawZulu-Natal), Sangeeta Malhotra (Goddard), Yi Mao (Tsinghua), Dan Marrone (Arizona), Kiyoshi
    [Show full text]
  • Aaron R. Parsons Campbell Hall 601, Dept
    1/4 Curriculum Vitae Aaron R. Parsons Campbell Hall 601, Dept. of Astronomy (510) 406-4322 University of California, Berkeley [email protected] Berkeley, CA 94720 USA http://bit.ly/aaronparsons Education University of California, Berkeley Ph.D., Astrophysics. Advisor: Donald C. Backer Dec. 2009 M.A., Astrophysics Sept. 2006 Harvard University, Double B.A., Physics and Mathematics, cum laude June, 2002 Professional Positions Assistant Professor 2011- Dept. of Astronomy, U. California, Berkeley NSF Astronomy and Astrophysics Postdoctoral Fellow 2009-2011 Dept. of Astronomy, U. California, Berkeley Charles H. Townes Postdoctoral Honorary Fellow 2009-2011 Space Sciences Laboratory, U. California, Berkeley NAIC Pre-Doctoral Researcher 2007-2009 Arecibo Observatory, Puerto Rico. Local Supervisor: C. Salter Graduate Student Researcher 2004-2009 Dept. of Astronomy, U. California, Berkeley. Advisor: D. Backer Junior Development Engineer 2002-2004 Space Sciences Laboratory, U. California, Berkeley. Supervisor: D. Werthimer Honors and Awards NSF CAREER Grant 2014 NSF AAPF Postdoctoral Fellow 2009 Charles H. Townes Postdoctoral Fellow 2009 Mary Elizabeth Uhl Prize for Outstanding Scholarly Achievement 2009 International Union of Radio Science (URSI) Young Scientist Award 2005 UC Berkeley Space Sciences Summer Fellow 2005 Harvard College Scholarship for Academic Excellence 2002 Robert C. Byrd Honors Scholarship 1998 Julius Poole Scholarship 1998 Elk's Scholarship 1998 Professional Activities PI of HERA; PI of PAPER; CASPER advisory board; Radio
    [Show full text]
  • Research and Development for HI Intensity Mapping
    Research and Development for HI Intensity Mapping Thematic Areas: Technological Development Activity, Ground Based Project Primary Contact: Name: Peter Timbie Institution: UW-Madison Email: [email protected] Phone: 608-890-2002 Abstract: Development of the hardware, data analysis, and simulation techniques for large compact radio arrays dedicated to mapping the 21 cm line of neutral hydrogen gas has proven to be more dif- ficult than imagined twenty years ago when such telescopes were first proposed. Despite tremendous technical and methodological advances, there are several outstanding questions on how to optimally calibrate and analyze such data. On the positive side, it has become clear that the outstanding issues are purely technical in nature and can be solved with sufficient development activity. Such activity will enable science across redshifts, from early galaxy evolution in the pre-reionization era to dark energy evolution at low redshift. Contributors and Endorsers: Zeeshan Ahmed1, David Alonso2, Mustafa A. Amin3,Reza´ Ansari4, Evan J. Arena5;6, Kevin Bandura7;8, Adam Beardsley9, Philip Bull10;11, Emanuele Castorina12, Tzu- Ching Chang13, Romeel Dave´14, Alexander van Engelen15;9, Aaron Ewall-Wice13, Simone Ferraro16, Simon Foreman15, Josef Frisch1, Daniel Green17, Gilbert Holder18, Daniel Jacobs9, Joshua S. Dillon19, Dionysios Karagiannis20;21, Alexander A. Kaurov22, Lloyd Knox23, Emily Kuhn24, Adrian Liu25, Yin- Zhe Ma26, Kiyoshi W. Masui27, Thomas McClintock5, Kavilan Moodley26, Moritz Munchmeyer¨ 28, Laura B. Newburgh24, Andrei Nomerotski5, Paul O’Connor5, Andrej Obuljen29, Hamsa Padmanabhan15, David Parkinson30, Olivier Perdereau4, David Rapetti31;32, Benjamin Saliwanchik24, Neelima Sehgal33, J. Richard Shaw34, Chris Sheehy5, Erin Sheldon5, Raphael Shirley35, Eva Silverstein36, Tracy Slatyer27;22, Anzeˇ Slosar5, Paul Stankus5, Albert Stebbins37, Peter T.
    [Show full text]
  • Brute-Force Mapmaking with Compact Interferometers: a Miteor Northern Sky Map from 128 Mhz to 175 Mhz
    Brute-Force Mapmaking with Compact Interferometers: A MITEoR Northern Sky Map from 128 MHz to 175 MHz The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Zheng, H.; Tegmark, M.;Dillon, J. S.; Liu, A.; Neben; A. R.; Tribiano, S. M.; Bradley, R. F.; Buza, V. et al. "Brute-Force Mapmaking with Compact Interferometers: A MITEoR Northern Sky Map from 128 MHz to 175 MHz." Monthly Notices of the Royal Astronomical Society 465, no. 3 (March 2017) : 2901–2915 © 2016 The Authors As Published http://dx.doi.org/10.1093/mnras/stw2910 Publisher Oxford University Press Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/109772 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ MNRAS 000, 000{000 (0000) Preprint 15 November 2016 Compiled using MNRAS LATEX style file v3.0 Brute-Force Mapmaking with Compact Interferometers: A MITEoR Northern Sky Map from 128 MHz to 175 MHz H. Zheng1?, M. Tegmark1, J. S. Dillon1;2, A. Liu2y, A. R. Neben1, S. M. Tribiano1;3;4 R. F. Bradley5;6, V. Buza1;7, A. Ewall-Wice1, H. Gharibyan1;8, J. Hickish9, E. Kunz1, J. Losh1, A. Lutomirski1, E. Morgan1, S. Narayanan1, A. Perko1;8, D. Rosner1, N. Sanchez1, K. Schutz1;10, M. Valdez1;11, J. Villasenor1, H. Yang1;8, K. Zarb Adami3, I. Zelko1;7, K. Zheng1 1Dept. of Physics and MIT Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA 2Dept.
    [Show full text]