Variation in the Internal Transcribed Spacer Region of Phakopsora Pachyrhizi and Implications for Molecular Diagnostic Assays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isolation, Purification, and Characterization of Phakopsora Pachyrhizi Isolates D.A
Isolation, Purification, and Characterization of Phakopsora pachyrhizi Isolates D.A. Smith1, C. Paul2, T.A. Steinlage2, M.R. Miles1, and G.L. Hartman1,2 1USDA-ARS, Urbana, IL 61801 2University of Illinois, Department of Crop Sciences, Urbana, IL 61801 Introduction: Fig. 1. Locations of P. pachyrhizi isolates Fig. 2. Single spore isolation Soybean rust, caused by Phakopsora pachyrhizi, was first reported in the continental United States in November 2004. Over the last 30 years, an international isolate collection has been maintained and used for research at the USDA-ARS Fort Detrick containment facilities. Since 2004, isolates have been collected by Picking a single spore Single pustule from various researchers in the U.S. In our case, P. from water agar plate single spore transfer pachyrhizi isolates have been obtained from 2006 and 2007 across the U.S. Maintaining, purifying, and characterizing isolates requires a commitment since keeping live cultures of the pathogen requires multiple resources. The goal of this research is to maintain an isolate collection to measure the pathogenic and Inoculated detached leaves are molecular variability of P. pachyrhizi across Isolate from kudzu Isolate from soybean years and locations. incubated in a tissue chamber Fig. 3. Reaction types for Developing a differential set of soybean Objectives: soybean rust accessions to characterize P. pachyrhizi • Isolate and purify P. pachyrhizi isolates as isolates: single spore and composite isolates from • Inoculation of soybean accessions with isolates across the U.S. HR is done in a detached leaf assay • Develop a differential set of soybean • Lesion types are evaluated as a hypersensitive accessions for characterization of P. -
Phakopsora Pachyrhizi) in MEXICO
Yáñez-López et al. Distribution for soybean rust in Mexico 2(6):291-302,2015 POTENTIAL DISTRIBUTION ZONES FOR SOYBEAN RUST (Phakopsora pachyrhizi) IN MEXICO Zonas de distribución potencial para roya de la soya (Phakopsora pachyrhizi) en México 1∗Ricardo Yáñez-López, 1María Irene Hernández-Zul, 2Juan Ángel Quijano-Carranza, 3Antonio Palemón Terán-Vargas, 4Luis Pérez-Moreno, 5Gabriel Díaz-Padilla, 1Enrique Rico-García 1Cuerpo Académico de Ingeniería de Biosistemas, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas s/n, CP. 76010, Querétaro, México. [email protected] 2Campo Experimental Bajío, (CEBAJ-INIFAP). Km 6.5 Carretera Celaya-San Miguel de Allende. Celaya, Guanajuato, México. 3Campo Experimental las Huastecas, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Carretera Tampico-Mante Km. 55, Villa Cuauhtémoc, Tamaulipas, México. 4Universidad de Guanajuato, Instituto de Ciencias Agricolas, Apdo. Postal 311. Irapuato, Guanajuato, México. 5Campo Experimental Cotaxtla. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Km. 3.5 Carretera Xalapa-Veracruz. Colonia Ánimas. Xalapa, Veracruz. Mexico. Artículo cientíco recibido: 18 de julio de 2014, aceptado: 16 de febrero de 2015 ABSTRACT. Asian Soybean Rust is one of the most important soybean diseases. Since the past decade, some im- portant soybean production areas in America, like Brazil and the United States of America, have been aected by this disease. Due to the seriousness of this threaten, -
FAMILIA PHAKOPSORACEAE ( Fungi: Uredinales) GENERALIDADES Y AFINIDADES
Familia Phakopsoraceae..... FAMILIA PHAKOPSORACEAE ( Fungi: Uredinales) GENERALIDADES Y AFINIDADES Pablo Buriticá Céspedes1 RESUMEN Se presentan aspectos generales sobre importancia de la familia Phakopsoraceae, afinidad y relaciones filogenéticas entre géneros, rango de hospedantes, distribución geográfica y ciclos de vida. Palabras clave: Uredinales, Phakopsoraceae. ABSTRACT General aspects in the Phakopsoraceae family importance, philogenetic affinities within genera, hosts range, geografic distribution and life cycles are presented. Key words: Uredinales, Phakopsoraceae. INTRODUCCION Dentro del concepto de clasificación taxonómica, la agrupación en familias, para el Orden Uredinales (Fungi: Basidiomycota: Heterobasidiomycia), no ha sido aún, bien desarrollado y por ende su uso común y rutinario es incipiente, obviado o rechazado. Sin embargo, en los últimos años se ha despertado mucho interés en este tópico, dentro de los Uredinólogos, debido a los avances obtenidos en el conocimiento de los distintos géneros estudiados como grupos (Cummins, 1959; Cummins e Hiratsuka, 1983); al valor taxonómico de los espermogonios en el nivel supragenérico (Hiratsuka y Cummins, 1963); a los estudios globales de los uredinios (Sathe, 1977); a los estudios de evolución, diversidad y delimitación de grupos de géneros dentro de las familias u órdenes de las plantas hospedantes (Leppik, 1972; Savile, 1976, 1979); a los estudios morfológicos aplicados a las variantes evolutivas de las estructuras en los ciclos de vida (Hennen y Buriticá, 1980), especialmente, en Endophyllaceae (Buriticá, 1991) y Pucciniosireae (Buriticá y Hennen, 1980); a los estudios sobre la ontogenia de los esporos (Hughes, 1970); y, al tratamiento sistemático de varios grupos, como Pucciniosireae (Buriticá y Hennen, 1980), géneros Chaconiaceos (Ono, 1983), Raveneliaceae (Leppik, 1972; Savile, 1989) y Phakopsoraceae (Buriticá, 1994, 1998). -
Introduction to Neotropical Entomology and Phytopathology - A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. VI - Introduction to Neotropical Entomology and Phytopathology - A. Bonet and G. Carrión INTRODUCTION TO NEOTROPICAL ENTOMOLOGY AND PHYTOPATHOLOGY A. Bonet Department of Entomology, Instituto de Ecología A.C., Mexico G. Carrión Department of Biodiversity and Systematic, Instituto de Ecología A.C., Mexico Keywords: Biodiversity loss, biological control, evolution, hotspot regions, insect biodiversity, insect pests, multitrophic interactions, parasite-host relationship, pathogens, pollination, rust fungi Contents 1. Introduction 2. History 2.1. Phytopathology 2.1.1. Evolution of the Parasite-Host Relationship 2.1.2. The Evolution of Phytopathogenic Fungi and Their Host Plants 2.1.3. Flor’s Gene-For-Gene Theory 2.1.4. Pathogenetic Mechanisms in Plant Parasitic Fungi and Hyperparasites 2.2. Entomology 2.2.1. Entomology in Asia and the Middle East 2.2.2. Entomology in Ancient Greece and Rome 2.2.3. New World Prehispanic Cultures 3. Insect evolution 4. Biodiversity 4.1. Biodiversity Loss and Insect Conservation 5. Ecosystem services and the use of biodiversity 5.1. Pollination in Tropical Ecosystems 5.2. Biological Control of Fungi and Insects 6. The future of Entomology and phytopathology 7. Entomology and phytopathology section’s content 8. ConclusionUNESCO – EOLSS Acknowledgements Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Insects are among the most abundant and diverse organisms in terrestrial ecosystems, making up more than half of the earth’s biodiversity. To date, 1.5 million species of organisms have been recorded, although around 85% of potential species (some 10 million) have not yet been identified. In the case of the Neotropics, although insects are clearly a vital element, there are many families of organisms and regions that are yet to be well researched. -
Phakopsora Cherimoliae (Lagerh.) Cummins 1941
-- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Phakopsora cherimoliae (Lagerh.) Cummins 1941 Annona rust Domain: Eukaryota, Kingdom: Fungi Division: Basidiomycota, Class: Pucciniomycetes Order: Pucciniales, Family: Phakopsoraceae Current Pest Rating: Q Proposed Pest Rating: A Comment Period: 12/07/2020 through 01/21/2021 Initiating Event: In September 2019, San Diego County agricultural inspectors collected leaves from a sugar apple tree (Annona squamosa) shipping from a commercial nursery in Fort Myers, Florida to a resident of Oceanside. CDFA plant pathologist Cheryl Blomquist identified in pustules on the leaves a rust pathogen, Phakopsora cherimoliae, which is not known to occur in California. She gave it a temporary Q-rating. In October 2020, Napa County agricultural inspectors sampled an incoming shipment of Annona sp. from Pearland, Texas, that was shipped to a resident of American Canyon. This sample was also identified by C. Blomquist as P. cherimoliae. The status of this pathogen and the threat to California are reviewed herein, and a permanent rating is proposed. History & Status: Background: The Phakopsoraceae are a family of rust fungi in the order Pucciniales. The genus Phakopsora comprises approximately 110 species occurring on more than 30 dicotyledonous plant families worldwide, mainly in the tropics (Kirk et al., 2008). This genus holds some very important and damaging pathogen species including Phakopsora pachyrhizi on soybeans, P. euvitis on grapevine, and P. gossypii on cotton. Phakopsora cherimoliae occurs from the southern USA (Florida, Texas) in the north to northern Argentina in the south (Beenken, 2014). -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ Annona is a genus of approximately 140 species of tropical trees and shrubs, with the majority of species native to the Americas, with less than 10 native to Africa. -
ROYA DE LA VID Phakopsora Euvitis Ono, 2000 Ficha Técnica No. 68
ROYA DE LA VID Phakopsora euvitis Ono, 2000 Ficha Técnica No. 68 SPHD, 2015; Dauri et al., 2004. CONTENIDO IDENTIDAD ........................................................................................................................................... 1 Nombre científico .............................................................................................................................. 1 Sinonimia .......................................................................................................................................... 1 Clasificación taxonómica ................................................................................................................... 1 Nombre común.................................................................................................................................. 1 Código EPPO. ................................................................................................................................... 1 Estatus fitosanitario ........................................................................................................................... 1 Situación de la plaga en México........................................................................................................ 1 IMPORTANCIA ECONÓMICA DE LA PLAGA ...................................................................................... 1 Potencial de impacto económico en México ..................................................................................... 2 DISTRIBUCIÓN GEOGRÁFICA DE LA -
Current Status of Research on Rust Fungi (Pucciniales) in India
Asian Journal of Mycology 4(1): 40–80 (2021) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/4/1/5 Current status of research on Rust fungi (Pucciniales) in India Gautam AK1, Avasthi S2, Verma RK3, Devadatha B 4, Sushma5, Ranadive KR 6, Bhadauria R2, Prasher IB7 and Kashyap PL8 1School of Agriculture, Abhilashi University, Mandi, Himachal Pradesh, India 2School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, India 3Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India 4 Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, India 5Department of Biosciences, Chandigarh University Gharuan, Punjab, India 6Department of Botany, P.D.E.A.’s Annasaheb Magar Mahavidyalaya, Mahadevnagar, Hadapsar, Pune, Maharashtra, India 7Department of Botany, Mycology and Plant Pathology Laboratory, Panjab University Chandigarh, India 8ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, India Gautam AK, Avasthi S, Verma RK, Devadatha B, Sushma, Ranadive KR, Bhadauria R, Prasher IB, Kashyap PL 2021 – Current status of research on Rust fungi (Pucciniales) in India. Asian Journal of Mycology 4(1), 40–80, Doi 10.5943/ajom/4/1/5 Abstract Rust fungi show unique systematic characteristics among all fungal groups. A single species of rust fungi may produce up to five morphologically and cytologically distinct spore-producing structures thereby attracting the interest of mycologist for centuries. In India, the research on rust fungi started with the arrival of foreign visiting scientists or emigrant experts, mainly from Britain who collected fungi and sent specimens to European laboratories for identification. Later on, a number of mycologists from India and abroad studied Indian rust fungi and contributed a lot to knowledge of the rusts to the Indian Mycobiota. -
Ampelopsis Rust -Phakopsora Ampelopsidis
U.S. Department of Agriculture, Agricultural Research Service Systematic Mycology and Microbiology Laboratory - Invasive Fungi Fact Sheets Ampelopsis rust -Phakopsora ampelopsidis The rust fungus Phakopsora ampelopsidis as currently defined is a pathogen of hosts in the genus Ampelopsis and perhaps in related genera in the family Vitaceae, but not of the cultivated grapevine species of Vitis or the ornamental species in Parthenocissus. Plants in Ampelopsis occur in Asia from Japan to Turkey as well as in North America, but the rust is not known in Europe, and has not been reported on Ampelopsis in the Americas. Only in eastern Asia, where the medicinal uses of species of Ampelopsis are being investigated is this rust a potential problem. It is most likely to be spread by aerial dispersal of urediniospores to nearer parts of Asia where species in the host genus are distributed. Phakopsora ampelopsidis Dietel & P. Syd. 1898 Spermogonia and aecia unknown. Uredinia on abaxial side of leaf, scattered or aggregated in small groups on a lesion, subepidermal, becoming erumpent, surrounded by paraphyses. The paraphyses are united at the base, strongly incurved, 21-43 µm high, thick-walled, 2.5-5.5 µm, both dorsally and ventrally. Urediniospores obovoid, obovoid-ellipsoid or oblong-ellipsoid, 16-27 x 11-17 µm. Wall evenly ca 1.5 µm thick, almost colourless, evenly echinulate. Four or six germ pores in equatorial zone of the spore wall, rarely scattered. Telia also formed on the abaxial surface, crustose, orange-brown,becoming dark brown to blackish brown, often confluent, subepidermal, applanate. Teliospores more or less randomly arranged in 3-4 layers, oblong or ellipsoid, angular and 13-28 x 6-15 µm. -
First Report of Soybean Rust Caused by Phakopsora Pachyrhizi on Phaseolus Spp
Plant Disease Note 2006 | First Report of Soybean Rust Caused by Phakopsora pachyrhizi on Phaseolus spp. in the United States 06/21/2006 04:54 PM Overview • Current Issue • Past Issues • Search PD • Search APS Journals Sample Issue • Buy an Article • Buy a Single Issue • CD-Roms • Subscribe Acceptances • Online e-Xtras • For Authors • Editorial Board • Acrobat Reader Back First Report of Soybean Rust Caused by Phakopsora pachyrhizi on Phaseolus spp. in the United States. T. N. Lynch, Department of Crop Science, University of Illinois, Urbana; J. J. Marois, Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy; D. L. Wright, Department of Agronomy, North Florida Research and Education Center, University of Florida, Quincy; P. F. Harmon, Department of Plant Pathology, University of Florida, Gainesville; C. L. Harmon, Southern Plant Diagnostic Network and Department of Plant Pathology, University of Florida, Gainesville; and M. R. Miles, USDA-ARS, Urbana, IL; and G. L. The American Hartman, USDA-ARS and Department of Crop Sciences, University of Illinois, Phytopathological Society Urbana. Plant Dis. 90:970, 2006; published on-line as DOI: 10.1094/PD-90- (APS) is a non-profit, professional, scientific 0970C. Accepted for publication 4 April 2006. organization dedicated to the study and control of plant diseases. Phakopsora pachyrhizi Syd. & P. Syd., the cause of soybean rust, was first Copyright 1994-2006 observed in the continental United States in November 2004 (2). During the The American Phytopathological Society growing season of 2005, P. pachyrhizi was confirmed on soybean (Glycine max) and/or kudzu (Pueraria montana) in nine states in the southern United States. -
Curriculum Vitae
CURRICULUM VITAE STEVEN A. WHITHAM Department of Plant Pathology & Microbiology Iowa State University Tel: 515-294-4952 4203 Advanced Teaching & Research Bldg. Fax: 515-294-9420 2213 Pammel Dr. Email: [email protected] Ames, IA 50011-1101 ORCID: 0000-0003-3542-3188 Web page: https://www.plantpath.iastate.edu/whithamlab/ Education: 1995: Ph. D. Plant Pathology, University of California, Berkeley, CA 1992: M.S. Plant Pathology, University of California, Berkeley, CA 1990: B.S. Agricultural Biochemistry, Iowa State University, Ames, IA Professional Experience: 2012 – Professor, Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 2013 – Director, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA 2007 – 2012 Associate Professor, Department of Plant Pathology, Iowa State University, Ames, IA 2000 – 2007 Assistant Professor, Department of Plant Pathology, Iowa State University, Ames, IA 1999 – 2000 Staff Scientist, Torrey Mesa Research Institute, Inc., San Diego, CA 1996 – 1999 Postdoctoral fellow, Institute of Biological Chemistry, Washington State University and Department of Biology, Texas A&M University. Advisor: Dr. James C. Carrington 1995 – 1996 Postdoctoral research, USDA-ARS & Department of Plant Biology, University of California, Berkeley, CA. Advisor: Dr. Barbara Baker 1990 – 1995 Graduate Student, Department of Plant Pathology, University of California, Berkeley, CA. Advisor: Dr. Barbara Baker Honors and Awards: Fellow, American Association for the Advancement of Science -
Master Thesis
Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Uppsala 2011 Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Iuliia Kyiashchenko Master‟ thesis, 30 hec Ecology Master‟s programme SLU, Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Iuliia Kyiashchenko Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Uppsala 2011 Supervisors: Prof. Jonathan Yuen, Dept. of Forest Mycology and Plant Pathology Anna Berlin, Dept. of Forest Mycology and Plant Pathology Examiner: Anders Dahlberg, Dept. of Forest Mycology and Plant Pathology Credits: 30 hp Level: E Subject: Biology Course title: Independent project in Biology Course code: EX0565 Online publication: http://stud.epsilon.slu.se Key words: rust fungi, aecia, aeciospores, morphology, barberry, DNA sequence analysis, phylogenetic analysis Front-page picture: Barberry bush infected by Puccinia spp., outside Trosa, Sweden. Photo: Anna Berlin 2 3 Content 1 Introduction…………………………………………………………………………. 6 1.1 Life cycle…………………………………………………………………………….. 7 1.2 Hyphae and haustoria………………………………………………………………... 9 1.3 Rust taxonomy……………………………………………………………………….. 10 1.3.1 Formae specialis………………………………………………………………. 10 1.4 Economic importance………………………………………………………………... 10 2 Materials and methods……………………………………………………………... 13 2.1 Rust and barberry -
Effect of Substrate Characteristics on the Growth and Sporulation of Two
fermentation Article Effect of Substrate Characteristics on the Growth and Sporulation of Two Biocontrol Microorganisms during Solid State Cultivation Ga Young Lee 1,2, Wenqi Li 1 , Ulalo M. Chirwa 1 and Jian Shi 1,* 1 Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506, USA; [email protected] (G.Y.L.); [email protected] (W.L.); [email protected] (U.M.C.) 2 Department of Food Science, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia * Correspondence: [email protected]; Tel.: +(859)-218-4321; Fax: +(859)-257-5671 Received: 27 June 2020; Accepted: 14 July 2020; Published: 17 July 2020 Abstract: Biocontrol agents are a group of naturally occurring organisms capable of interrupting the lifespan and suppressing the propagation of disease organisms. The use of biocontrol agents offers an environment-friendly and sustainable solution to the synthetic agrochemicals. In this study, we investigated parboiled rice and millets as substrates for spore production of two model biocontrol microorganisms (Bacillus pumilus and Streptomyces griseus) under solid state cultivation (SSC) conditions. The effects of cultivation parameters such as initial moisture content, water activity, and cultivation time on microbial growth and spore production were studied. Furthermore, texture profile analysis was performed to test the stress and strain curve and the hardness and stickiness of the substrates. The greatest spore production occurred at 50% moisture content with millets as a substrate, yielding a count of 1.34 108 spores/g-wet-substrate enumerated with plate count analysis × and 1.70 108 events/g-wet-substrate using flow cytometry analysis.