DNA Barcodes Affirm That 16 Species of Apparently Generalist Tropical

Total Page:16

File Type:pdf, Size:1020Kb

DNA Barcodes Affirm That 16 Species of Apparently Generalist Tropical DNA barcodes affirm that 16 species of apparently SEE COMMENTARY generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists M. Alex Smith*†, D. Monty Wood‡, Daniel H. Janzen†§, Winnie Hallwachs§, and Paul D. N. Hebert* *Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada N1G 2W1; ‡Diptera Unit, Canadian National Collection of Insects, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6; and §Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, December 30, 2006 (sent for review December 26, 2006) Many species of tachinid flies are viewed as generalist parasitoids exceptions are truly generalists, we cytochrome c oxidase 1 (CO1) because what is apparently a single species of fly has been reared DNA-barcoded (e.g., as in ref. 12) the 16 most generalist mor- from many species of caterpillars. However, an ongoing inventory of phospecies, all being species that have been reared by the inventory the tachinid flies parasitizing thousands of species of caterpillars in from many species of caterpillars in a few to many families and all Area de Conservacio´ n Guanacaste, northwestern Costa Rica, has being species reared tens to hundreds of times [see supporting encountered >400 species of specialist tachinids with only a few information (SI) Table 1 and SI Appendices 1 and 2] . When generalists. We DNA-barcoded 2,134 flies belonging to what ap- barcoded, this select group of exceptionally generalist morphospe- peared to be the 16 most generalist of the reared tachinid morphospe- cies dissolved into 64 species of specialists and 9 generalists (Fig. 1 cies and encountered 73 mitochondrial lineages separated by an and SI Table 1). This outcome mirrors and magnifies the result average of 4% sequence divergence. These lineages are supported by recorded when we barcoded the 20 relatively specialist morphospe- collateral ecological information and, where tested, by independent cies of Belvosia, another tachinid genus living in the same ACG nuclear markers (28S and ITS1), and we therefore view these lineages habitats; its three somewhat generalist species were each found to as provisional species. Each of the 16 apparently generalist species be complexes of specialists (12). dissolved into one of four patterns: (i) a single generalist species, (ii) As of October 2006, the ACG caterpillar and parasitoid inventory a pair of morphologically cryptic generalist species, (iii) a complex of had reared tachinid flies from 16,500 of Ͼ390,000 wild-caught specialist species plus a generalist, or (iv) a complex of specialists with caterpillars (Ϸ4.2% rate of infection). For the past 17 years, no remaining generalist. In sum, there remained 9 generalist species D.M.W. (8, 13) has iteratively assigned these flies to morphospecies among the 73 mitochondrial lineages we analyzed, demonstrating and identified them with scientific names when available. The first that a generalist lifestyle is possible for a tropical caterpillar parasitoid taxonomic assignment was completed without knowledge of the fly. These results reinforce the emerging suspicion that estimates of host caterpillar. Taxonomic assignments were flagged for reexam- global species richness are likely underestimates for parasitoids ination when the fly’s host caterpillar species did not match what (which may constitute as much as 20% of all animal life) and that the appeared to be the host-use pattern of that fly species. Although all strategy of being a tropical generalist parasitic fly may be yet more flies were placed to genus (described or undescribed), Ͻ10% of the unusual than has been envisioned for tachinids. morphospecies appeared to match a known type specimen and thus could be presently “named” with any confidence. Inasmuch as it is 28S ͉ Area de Conservacio´ n Guanacaste ͉ cytochrome c oxidase 1 ͉ believed that only 7–20% of insect species have been scientifically internal transcribed spacer 1 ͉ species diversity described (3, 14), such a low level of taxonomic allocation is not surprising. However, all of the 16 most generalist morphospecies arasitoid insects are currently believed to comprise as much as were sufficiently distinctive among the hundreds of species-, genus-, Pone quarter of all insect species (1, 2) and, because insects or family-level specialists that they did receive a tentative scientific comprise Ϸ80% of all named animal species, up to 20% of all name through this process; on average, these names are all Ͼ100 animal life (3). However, accurate evaluations of parasitoid species years old (SI Table 2). We then added sequence data from CO1 richness (2), and subsequent determinations of parasitoid host- barcoding to the 16 morphologically defined and host-checked units specificity, are impeded by the very large number of morphologi- already recognized to determine whether each generalist mor- cally similar species and the resultant difficulty in identifying them. phospecies comprised specimens with little intraspecific barcode This situation further complicates the determination of host– variability. Such a protocol determines whether these 16 species can parasitoid relationships. There may be many more species of insect ECOLOGY parasitoids than currently believed if host-specificity has been underestimated (4, 5). After the Hymenoptera, Diptera (flies) are Author contributions: M.A.S., D.H.J., W.H., and P.D.N.H. designed research; M.A.S., D.M.W., the most species-rich group of parasitoids, and the obligate para- D.H.J., and W.H. performed research; M.A.S., D.H.J., and W.H. analyzed data; and M.A.S., D.H.J., W.H., and P.D.N.H. wrote the paper. sitoid family Tachinidae is among the most species-rich of Diptera families, with nearly 10,000 described species (1, 6–8). Within this The authors declare no conflict of interest. diversity, many described species of Tachinidae are extremely Freely available online through the PNAS open access option. similar morphologically, and it is a taxonomically challenging Abbreviations: ACG, Area de Conservacio´ n Guanacaste, Costa Rica; CO1, cytochrome c family. oxidase 1; NJ, neighbor-joining. It is a widely held view that many species of tachinid parasitoids Data deposition: The sequences reported in this paper have been deposited in the GenBank database (CO1: accession nos. EF180450–EF182583; 28S and ITS1: accession nos. EF183546– are relatively generalist (polyphagous) in the species of hosts they EF184019 and EF189688–EF189703 and two representative sequences of Chetogena scute- parasitize (7–10). However, a 29-year inventory of Ͼ400 species of llarisDHJ01 Wolbachia, accession nos. EF192042 and EF192043). tachinids reared from Ͼ390,000 wild-caught caterpillars of Ͼ3,500 See Commentary on page 4775. species in Area de Conservacio´n Guanacaste (ACG) in northwest- †To whom correspondence may be addressed. E-mail: [email protected] or djanzen@ ern Costa Rica indicates that at least 90% of the tachinid species sas.upenn.edu. from this tropical site are host-specific to one or a few related This article contains supporting information online at www.pnas.org/cgi/content/full/ species (specialists) (ref. 11 and http://janzen.sas.upenn.edu). How- 0700050104/DC1. ever, there are conspicuous exceptions. To ascertain whether these © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0700050104 PNAS ͉ March 20, 2007 ͉ vol. 104 ͉ no. 12 ͉ 4967–4972 1 % Winthemia tricolorDHJ01 Arctiidae (1) Winthemia tricolorDHJ02 Arctiidae (1) Winthemia tricolorDHJ04 Geometridae (1) Winthemia tricolorDHJ03 Geometridae (1) Hemisturmia tenuipalpisDHJ01 Immidae (1) Hemisturmia tenuipalpisDHJ02 Saturnidae (1) Hemisturmia tenuipalpisDHJ03 5 families (10) Hemisturmia tenuipalpisDHJ04 Crambidae (1) Anoxynops auratusDHJ03 Nymphalidae (1) Anoxynops auratusDHJ06 Nymphalidae (1) Anoxynops auratusDHJ08 Nymphalidae (1) Anoxynops auratusDHJ07 Nymphalidae (1) Anoxynops auratusDHJ05 Nymphalidae (1) Anoxynops auratusDHJ04 Nymphalidae (1) Anoxynops auratusDHJ11 Sphingidae (1) Anoxynops auratusDHJ01 Nymphalidae (1) Hyphantrophaga blandaDHJ06 7 families (21) Hyphantrophaga blandaDHJ03 Crambidae (3) Hyphantrophaga blandaDHJ02 Geometridae (1) Hyphantrophaga virilis 22 families (176) Patelloa xanthuraDHJ01 19 families (145) Patelloa xanthuraDHJ03 -Papilionidae (3) Patelloa xanthuraDHJ02 Papilionidae (1) Patelloa xanthuraDHJ04 Hesperidae (6) Patelloa xanthuraDHJ06 Limacodidae (1) Patelloa xanthuraDHJ05 3 families (6) Lespesia parviteresDHJ06 Hesperidae (6) Lespesia parviteresDHJ01 Pieridae (2) Lespesia parviteresDHJ04 Riodinidae (4) Lespesia parviteresDHJ02 Noctuidae (1) Lespesia posticaDHJ07 3 families (5) Lespesia posticaDHJ05 Noctuidae (2) Lespesia posticaDHJ06 Noctuidae (6) Lespesia posticaDHJ08 - 1 sp Noctuidae Lespesia posticaDHJ01 Notodontidae (2) Lespesia posticaDHJ11 Noctuidae (1) Lespesia aletiae - 12 families (66) Siphosturmia rafaeliDHJ04 - Hesperidae (1) Siphosturmia rafaeliDHJ03 - Hesperidae (10) Siphosturmia rafaeliDHJ01 - Hesperidae (1) Siphosturmia rafaeliDHJ05 - Hesperidae (2) Siphosturmia rafaeliDHJ02 - Hesperidae (8) Siphosturmia rafaeliDHJ06 - Hesperidae (3) Drino piceiventrisDHJ03 - Sphingidae (1) Drino piceiventrisDHJ05 - Sphingidae (12) Drino piceiventrisDHJ07 - Sphingidae (5) Drino piceiventrisDHJ06 - Sphingidae (5) Drino piceiventrisDHJ04 - Sphingidae (1) Drino piceiventrisDHJ13 - Sphingidae (2) Drino piceiventrisDHJ18 - Sphingidae (2) Drino piceiventrisDHJ17 - Sphingidae (2) Drino piceiventrisDHJ10 - Sphingidae (5)
Recommended publications
  • Impact of Imidacloprid and Horticultural Oil on Nonâ•Fitarget
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians Carla Irene Dilling University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Dilling, Carla Irene, "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/120 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carla Irene Dilling entitled "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris L. Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, Nathan Sanders, James Rhea, Nicole Labbé Accepted for the Council: Carolyn R.
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Géneros Goniini (Diptera: Tachinidae: Exoristiinae) De Cusco, Perú
    Volumen 36, Nº 1. Páginas 91-104 IDESIA (Chile) Enero, 2018 Géneros Goniini (Diptera: Tachinidae: Exoristiinae) de Cusco, Perú: clave, redescripciones y distribución Goniini genera (Diptera: Tachinidae: Exoristiinae) from Cusco, Perú: key, redescriptions and distribution Lizeth Paucar D.1, Christian R. González2, Erick Yábar L.1* RESUMEN Tachinidae es una de las familias de Diptera más diversificadas, y la más grande de Oestroidea, con más de 8.500 especies descritas en más de 1.500 géneros y distribuidas en todas las regiones zoogeográficas del planeta. Se reportan para Cusco seis géneros de Goniini (Diptera, Tachinidae): Araucosimus Aldrich, Chaetocnephalia Townsend, Chaetocraniopsis Townsend, Dolichocnephalia Townsend, Germariopsis Townsend y Gonia Meigen. Los géneros Chaetocnephalia, Chaetocraniopsis, Dolichocnephalia y Germariopsis se reportan por primera vez para Cusco y Araucosimus por primera vez para Perú. Se incluye una clave para los seis géneros estudiados. Palabras claves: taxonomía, Goniini, claves, Región Neotropical, Perú. ABSTRACT The family Tachinidae is one of the most diverse of all the insect families with more than 8,500 described species classified into more than 1,500 genera. Six genera of Goniini (Diptera, Tachinidae) are reported to Cusco: Araucosimus Aldrich, Chaetocnephalia Townsend, Chaetocraniopsis Townsend, Dolichocnephalia Townsend, Germariopsis Townsend y Gonia Meigen. The genus Araucosimus is cited for the first time to Peru. Genera Chaetocnephalia, Chaetocraniopsis, Dolichocnephalia, and Germariopsis are cited for the first time to Cusco. A key to the six genera is included. Key words: taxonomy, Goniini, keys, Neotropical Region, Perú. Introducción incluyendo desiertos, bosques, pasturas, montañas y tundra (Stireman et al., 2006). Los Tachinidae son un grupo de muscoideos En la Región Neotropical, la subfamilia caliptrados de la superfamilia Oestroidea, con Exoristinae, Goniinae sensu Guimaraes (1971), más de 8.500 especies clasificadas en un número comprende 21 tribus, una de las cuales es Goniini.
    [Show full text]
  • Mimetic Asociations in Natural Populations of Tropical Papilionid Buuerflies
    Rev. Bio!. Trop.) 19(1, 2): 211-240, 1971 Mimetic asociations in natural populations of tropical papilionid buUerflies. l. Life history and structure of a tropical dry forest breeding population of Battus polydamus polydamus. by Allen M. Young* (Received for publication August 4, 1971) This paper describes the liEe history and the ecological characteristics oE a. small breeding population oE the tropical papilionid butterfly, Battus palydamus polydamus Linnaeus (Fig. 1), at a tropical dry forest (HOLDRIDGE, 33) site in northwestern Costa Rica. Biological studies of tropical papilionids are virtually non-existent, with the notable exceptions of nurnerous detailed descriptions of life stages for various Mexlcan species (DYAR, 21; HOFFMANN, 32; COMSTOCK and GARCÍA, 12; Ross, 50). However, even detailed data on Central American species south of Mexico have been lacking (SElTZ, 51). Despite the apparent paucity of ecological studies on the natural populations oE tropical papilionid butterflies, considerable theoretical and experimental interest has centered around this group of insects with regard to their supposed Eunctional roles in mimicry complexes. The studies of BROWER and BROWER (7) have shown that sorne species of papilionids, particularly those belonging to the tribe Troidini, (Parides, Battus) are unpalatable as Eood morsels to birds, thus implying that these but­ terflies may act as models in mirnicry complexes in nature. Although there exists apparent taxonomic confusion on the generic labelling of various species, it is believed that many species of the genera Battus and Parides (in addition to a third genus, TroMes, EHRLICH, 22) exploit various species oE vines belonging to the farnily Aristolochiaceae (genus Aristaloebía) -a farnily of alkaloid-rich plants (vines and a few shrubs) that have their greatest distribution within the New World Tropics (GOOD, 30).
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • Tachinid Collecting in Southwest New Mexico and Arizona During the 2007 NADS Field Meeting
    Wright State University CORE Scholar Biological Sciences Faculty Publications Biological Sciences 2-2008 Tachinid Collecting in Southwest New Mexico and Arizona during the 2007 NADS Field Meeting John O. Stireman III Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/biology Part of the Biology Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Systems Biology Commons Repository Citation Stireman, J. O. (2008). Tachinid Collecting in Southwest New Mexico and Arizona during the 2007 NADS Field Meeting. The Tachinid Times (21), 14-16. https://corescholar.libraries.wright.edu/biology/404 This Article is brought to you for free and open access by the Biological Sciences at CORE Scholar. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. The Tachinid Times part of Florida’s natural heritage, its native bromeliads. some of the rarer species on that particular hilltop. Once this goal has been achieved, a program for repop- Identifications were made with generic and species ulating devastated areas with small plants grown from seed keys and descriptions from the literature (see O’Hara and specifically collected from a number of hard-hit areas can Wood 2004) with particular reliance on Monty Wood’s begin. (1987) key to Nearctic genera. Specimens were also com- pared to previously identified material in my collection. Tachinid collecting in southwest New Mexico and These identifications should be considered preliminary as Arizona during the 2007 NADS field meeting (by J.O.
    [Show full text]
  • Specialization in Plant–Pollinator Networks
    Villalobos et al. BMC Ecol (2019) 19:34 https://doi.org/10.1186/s12898-019-0250-z BMC Ecology RESEARCH ARTICLE Open Access Specialization in plant–pollinator networks: insights from local-scale interactions in Glenbow Ranch Provincial Park in Alberta, Canada Soraya Villalobos1* , José Manuel Sevenello‑Montagner2 and Jana C. Vamosi1 Abstract Background: The occurrence and frequency of plant–pollinator interactions are acknowledged to be a function of multiple factors, including the spatio‑temporal distribution of species. The study of pollination specialization by exam‑ ining network properties and more recently incorporating predictors of pairwise interactions is emerging as a useful framework, yet integrated datasets combining network structure, habitat disturbance, and phylogenetic information are still scarce. Results: We found that plant–pollinator interactions in a grassland ecosystem in the foothills of the Rocky Mountains are not randomly distributed and that high levels of reciprocal specialization are generated by biological constraints, such as foral symmetry, pollinator size and pollinator sociality, because these traits lead to morphological or pheno‑ logical mismatching between interacting species. We also detected that landscape degradation was associated with diferences in the network topology, but the interaction webs still maintained a consistently higher number of recip‑ rocal specialization cases than expected. Evidence for the reciprocal evolutionary dependence in visitors (e.g., related pollinators visiting related plants) were weak in this study system, however we identifed key species joining clustered units. Conclusions: Our results indicate that the conserved links with keystone species may provide the foundation for generating local reciprocal specialization. From the general topology of the networks, plant–pollinators interactions in sites with disturbance consisted of generalized nodes connecting modules (i.e., hub and numerous connectors).
    [Show full text]
  • Diptera: Tachinidae: Exoristinae)
    Two tribes hidden in one genus: the case of Agaedioxenis Villeneuve (Diptera: Tachinidae: Exoristinae) Pierfilippo Cerretti, James E. O’Hara, Isaac S. Winkler, Giuseppe Lo Giudice & John O. Stireman Organisms Diversity & Evolution ISSN 1439-6092 Org Divers Evol DOI 10.1007/s13127-015-0211-0 1 23 Your article is protected by copyright and all rights are held exclusively by Gesellschaft für Biologische Systematik. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Org Divers Evol DOI 10.1007/s13127-015-0211-0 ORIGINAL ARTICLE Two tribes hidden in one genus: the case of Agaedioxenis Villeneuve (Diptera: Tachinidae: Exoristinae) Pierfilippo Cerretti1,2 & James E. O’Hara3 & Isaac S. Winkler4 & Giuseppe Lo Giudice2 & John O. Stireman III4 Received: 18 December 2014 /Accepted: 9 March 2015 # Gesellschaft für Biologische Systematik 2015 Abstract The Afrotropical tachinid “genus” Agaedioxenis two names. Eugaedioxenis gen. nov. is recognized based on Villeneuve is taken here as an example of the challenges faced two species, Eugaedioxenis haematodes (Villeneuve), type by dipterists in classifying one of the most diverse and species species and comb.
    [Show full text]
  • Heritable Genetic Variation and Herbivore-Induced Expression
    Annals of Botany 100: 1337–1346, 2007 doi:10.1093/aob/mcm220, available online at www.aob.oxfordjournals.org Extrafloral Nectaries in Aspen (Populus tremuloides): Heritable Genetic Variation and Herbivore-induced Expression STUART C. WOOLEY1,†*, JACK R. DONALDSON1,‡ ,ADAMC.GUSSE1 , RICHARD L. LINDROTH1 and MICHAEL T. STEVENS2,† 1Department of Entomology and 2Department of Botany, University of Wisconsin, Madison, WI 53706, USA Received: 13 June 2007 Returned for revision: 9 July 2007 Accepted: 23 July 2007 † Background and Aims A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. † Methods EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad- sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. † Key Results Broad-sense heritability for expression (0.74–0.82) and induction (0.85) of EFNs was high.
    [Show full text]
  • Benton County Prairie Species Habitat Conservation Plan
    BENTON COUNTY PRAIRIE SPECIES HABITAT CONSERVATION PLAN DECEMBER 2010 For more information, please contact: Benton County Natural Areas & Parks Department 360 SW Avery Ave. Corvallis, Oregon 97333-1192 Phone: 541.766.6871 - Fax: 541.766.6891 http://www.co.benton.or.us/parks/hcp This document was prepared for Benton County by staff at the Institute for Applied Ecology: Tom Kaye Carolyn Menke Michelle Michaud Rachel Schwindt Lori Wisehart The Institute for Applied Ecology is a non-profit 501(c)(3) organization whose mission is to conserve native ecosystems through restoration, research, and education. P.O. Box 2855 Corvallis, OR 97339-2855 (541) 753-3099 www.appliedeco.org Suggested Citation: Benton County. 2010. Prairie Species Habitat Conservation Plan. 160 pp plus appendices. www.co.benton.or.us/parks/hcp Front cover photos, top to bottom: Kincaid’s lupine, photo by Tom Kaye Nelson’s checkermallow, photo by Tom Kaye Fender’s blue butterfly, photo by Cheryl Schultz Peacock larkspur, photo by Lori Wisehart Bradshaw’s lomatium, photo by Tom Kaye Taylor’s checkerspot, photo by Dana Ross Willamette daisy, photo by Tom Kaye Benton County Prairie Species HCP Preamble The Benton County Prairie Species Habitat Conservation Plan (HCP) was initiated to bring Benton County’s activities on its own lands into compliance with the Federal and State Endangered Species Acts. Federal law requires a non-federal landowner who wishes to conduct activities that may harm (“take”) threatened or endangered wildlife on their land to obtain an incidental take permit from the U.S. Fish and Wildlife Service. State law requires a non-federal public landowner who wishes to conduct activities that may harm threatened or endangered plants to obtain a permit from the Oregon Department of Agriculture.
    [Show full text]
  • Perspectives in Ecological Theory and Integrated Pest Management
    Perspectives in Ecological Theory and Integrated Pest Management Since the early days of integrated pest management a sound ecological foundation has been considered essential for the development of effective systems. From time to time, there have been attempts to evaluate the ways in which ecological theory is exploited in pest control, and to review the lessons that ecologists learn from pest management. In the last 20 years there have been many developments within the contribution of ecological theory to integrated pest management, and the objective of this book is to capture some of the new themes in both pest management and ecology that have emerged and to provide an updated assessment of the role that basic ecology plays in the development of rational and sustainable pest management practices. The major themes are examined, assessing the significance and potential impact of recent technological and conceptual developments for the future of integrated pest management. Marcos Kogan is Professor and Director Emeritus of the Integrated Plant Protection Center at Oregon State University. Paul Jepson has been Director of the Integrated Plant Protection Center at Oregon State University since 2002. Perspectives in Ecological Theory and Integrated Pest Management edited by Marcos Kogan and Paul Jepson Oregon State University cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sa˜o Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521822138 ß Cambridge University Press 2007 This publication is in copyright.
    [Show full text]