Nor-Lignans: Occurrence in Plants and Biological Activities—A Review

Total Page:16

File Type:pdf, Size:1020Kb

Nor-Lignans: Occurrence in Plants and Biological Activities—A Review molecules Review Nor-Lignans: Occurrence in Plants and Biological Activities—A Review Claudio Frezza 1,* , Alessandro Venditti 2,* , Chiara Toniolo 1, Daniela De Vita 1, Marco Franceschin 2, Antonio Ventrone 1, Lamberto Tomassini 1 , Sebastiano Foddai 1, Marcella Guiso 2, Marcello Nicoletti 1, Mauro Serafini 1 and Armandodoriano Bianco 2,* 1 Department of Environmental Biology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] (C.T.); [email protected] (D.D.V.); [email protected] (A.V.); [email protected] (L.T.); [email protected] (S.F.); [email protected] (M.N.); mauro.serafi[email protected] (M.S.) 2 Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] (M.F.); [email protected] (M.G.) * Correspondence: [email protected] (C.F.); [email protected] (A.V.); [email protected] (A.B.); Tel.: +39-0649912194 (C.F.); +39-0649913622 (A.V. & A.B.) Received: 29 November 2019; Accepted: 30 December 2019; Published: 3 January 2020 Abstract: In this review article, the occurrence of nor-lignans and their biological activities are explored and described. Nor-lignans have proven to be present in several different families also belonging to chemosystematically distant orders as well as to have many different beneficial pharmacological activities. This review article represents the first one on this argument and is thought to give a first overview on these compounds with the hope that their study may continue and increase, after this. Keywords: nor-lignans; occurrence; biological activities 1. Introduction A large part of secondary plant phenolic natural products derives from the aromatic amino acids couple tyrosine/phenylalanine. The de-amination of these compounds gives raise, through the shikimic acid pathway, to the intermediate metabolites C(6)–C(3), i.e., propenyl-phenols and allyl-phenols, generally named as phenylpropanoids. These are the starting points of the biosynthesis of several classes of active constituents related to the stability of the cell wall and to the defense of plants against herbivorous animals and pathogens. The first line of defense in terrestrial plants is a mechanical one, related to a polymerization process which leads to the formation of lignin, the main component of wood. Lignin is a very strong and stable macromolecule. Its introduction inside the plant cell wall instead of the carbohydrate polymer cellulose, confers force and resistance, allowing the formation of giant tree’s structure and making the digestions of the adult parts of the plant from herbivorous animals very difficult. Yet, the lignin defense line has resulted to be quite insufficient in many cases and the incoming predominance of herbal species determined the shift towards another form of defense, i.e., the chemical one. Actually, the phenylpropanoids pathway has never been dismissed, but rather it has turned towards the synthesis of smaller products having more precise targets. Among these molecules, the dimerization process of C(6)–C(3) precursors gives rise to three important classes of natural secondary metabolites: lignans, neo-lignans and nor-lignans. These classes present similar features due to their common biosynthetic origin. Their general structure is characterized by the presence of two terminal phenyl groups, which are more or less functionalized with hydroxyl groups and connected by a central chain of six carbon atoms, differently arranged and oxidized. The main Molecules 2020, 25, 197; doi:10.3390/molecules25010197 www.mdpi.com/journal/molecules Molecules 2020, 25, 197 2 of 42 Molecules 2020, 24, x 2 of 48 diffoxidized.erence among The main lignans, differenceneo-lignans among andlignans,nor-lignans neo-lignans is due and to nor the-lignans different is due type to of the junction different between type theof two junction C(6)C(3) between (=PhC3) the two units. C(6)C(3) In particular, (=PhC3) units. in lignans, In particular, this junction in lignans, is through this junction a β-β is(8-8 through0) bond anda β in-βneo (8-8-lignans′) bond theand junction in neo-lignans is not the a β -junctionβ type. is Therefore, not a β-β lignanstype. Therefore, and neo-lignans, lignans and and neo their-lignans, several diffanderent their derived several subclasses, different derived can be identified subclasses, depending can be identified upon the depending carbon skeletons upon thewhich carbon they skeletons possess. Forwhich what they concerns possess.nor -lignans,For what theconcerns structure nor-lignans, is more complicated.the structure is In more fact, norcomplicated.-lignans own In fact, a peculiar nor- characteristic,lignans ownwith a peculiar respect characteristic, to lignans and withneo respect-lignans, to lignans which and is the neo cut-lignans, of one which carbon is fromthe cut the of central one carbon from the central chain. This loss forces this chain to be differently arranged from lignans and chain. This loss forces this chain to be differently arranged from lignans and neo-lignans, such as in a neo-lignans, such as in a linear sequence or in a C(3)C(2) arrangement meaning 8,9′-coupling and 7′,8- linear sequence or in a C(3)C(2) arrangement meaning 8,9 -coupling and 7 ,8-coupling or alternatively coupling or alternatively in the bis-nor-lignan and cyclo-0 nor-lignan skeletons0 (8,8′) where chirality in the bis-nor-lignan and cyclo-nor-lignan skeletons (8,8 ) where chirality plays a central role. From this plays a central role. From this description, it is quite 0easy to understand the other definition of the description, it is quite easy to understand the other definition of the structure of nor-lignans: natural structure of nor-lignans: natural compounds based on diphenyl-pentanes, derived by the union of compoundstwo phenylpropanoid based on diphenyl-pentanes, units in the positions derived α, β′ by or the β, unionγ′ and of characterized two phenylpropanoid with the loss units of inthe the α β β γ positionsterminal ,carbon0 or of, the0 and chain characterized [1–3]. with the loss of the terminal carbon of the chain [1–3]. FigureFigure1 shows 1 shows the the possible possible di differentfferent arrangements arrangements forfor nor-lignans. 7' 9' 8' β β' β' ' β β 8 β 7 6',7-cyclo-9-nor-lignans 9,9'-bis-nor-lignans 9-nor-lignans (8,8'-coupling) (8,8'-coupling) (8,8'-coupling) 9' 8' 7 9' 7' 8 8' α' β 8 7 9-nor-neo-lignan (8,9'-coupling) 9-nor-neo-lignan (7',8-coupling) FigureFigure 1. 1.general general nornor-lignan basic basic structures. structures. 2. Occurrence2. Occurrence of ofNor Nor-Lignans-Lignans in in the the Plant Plant KingdomKingdom FromFrom the the environmental environmental and and taxonomical taxonomical points of view, lignans lignans are are mainly mainly biosynthesized biosynthesized in in woodywoody plants, plants, since since main main occurrences occurrences are related are related to Gymnospermae to Gymnospermae and Angiospermae. and Angiospermae. In particular, In theyparticular, can be foundthey can in thebe found trees’ in members the trees’ of members ancient of forests ancient like forests the Amazonian like the Amazonian one, but, one, probably but, becauseprobably of theirbecause simple of their biosynthetic simple biosynthetic pathway, pathway, they can they be presentcan be present also in also herbal in herbal plants plants like like those of monocotyledons.those of monocotyledons. InIn this this review review article, article, the attentionthe attention is focused is focused on nor on-lignans, nor-lignans, their occurrencetheir occurrence in the plantin the kingdom plant andkingdom their importance and their importance as bioactive as molecules. bioactive molecules. Molecules 2020, 25, 197 3 of 42 Table1 reports on the nor-lignans identified in the plant kingdom differentiating them according to the species, genus and family. In addition, the organs from which these compounds have been isolated, and the techniques used for their isolation and identification were completely added. Table 1. of nor-lignans in the plant kingdom. Family Species Studied Organs Compounds Methods References Justicia patentiflora SE, CC, HPLC, [α] , Acanthaceae Leaves and stems justiflorinol D [4] Hemsl. UV, IR, NMR, MS (+)-acortatarinowin A, (+)-acortatarinowin B, SE, CC, HPLC, ECD, (+)-acortatarinowin C, Acorus tatarinowii [α] , UV, IR, NMR, [5] Acoraceae Rhizomes ( )-acortatarinowin A, D Schott − MS ( )-acortatarinowin B, − ( )-acortatarinowin C − SE, CC, [α] , UV, IR, acorusin B D [6] NMR, MS Duguetia confinis (Engl. pachypostaudin A, SE, CC, TLC, NMR, Bark [7] Annonaceae and Diels) Chatrou pachypostaudin B MS Pachypodanthium pachypostaudin A, staudlii (Engl. and Bark pachypostaudin B, SE, MP, NMR, MS [8] Diels) Engl. and Diels pachypophyllin 2,3-bis-(p-hydroxyphenyl)-2- Araucaria angustifolia SE, CC, HPLC, TLC, Araucariaceae Knot resin cyclopentene-1-one, nyasol, [9] (Bertol.) Kuntze UV, IR, NMR, MS cryptoresinol nyasol, 4 -O-methyl-nyasol, 0 SE, CC, LC, [α] , Anemarrhena 1,3-di-p-hydroxyphenyl-4- D [10,11] NMR, MS asphodeloides Rhizomes penten-1-one Bunge nyasol, 40-O-methyl-nyasol, 3”-methoxy-nyasol, SE, CC, NMR, MS [12] 3”-hydroxy-4”-methoxy-4”- dehydroxy-nyasol SE, CC, HPLC, UV, nyasol [13] NMR, MS Asparagus africanus CC, LC, HPLC, NMR, Roots nyasol [14] Lam. MS iso-agatharesinoside, SE, CC, [α] , UV, IR, Asparagus Roots D [15] iso-agatharesinol NMR, MS cochinchinensis (Lour.) SE, CC, [α] , IR, Merr. Tubers nyasol D [16] Asparagaceae NMR, MS 30-hydroxy-40-methoxy-40- dehydroxy-nyasol, nyasol, 3 -methoxy-nyasol, 0 SE, CC, [α] , UV, IR, Roots 1,3-bis-di-p-hydroxyphenyl- D [17] NMR, MS 4-penten-1-one, asparenydiol, 300-methoxy-asparenydiol 30-methoxy-nyasin, iso-agatharesinol, gobicusin Asparagus gobicus A, gobicusin B, nyasol, SE, CC, [α] , UV, IR, N.A.Ivanova ex Roots D [18] 4-[5-(4-methoxyphenoxy)-3- NMR, MS Grubov penten-1-ynyl]phenol, sequirinC Asparagus racemosus iso-agatharesinol, gobicusin Whole plant SE, CC, NMR, MS [19] Willd.
Recommended publications
  • Pinoresinol Reductase 1 Impacts Lignin Distribution During Secondary Cell Wall Biosynthesis in Arabidopsis
    Phytochemistry xxx (2014) xxx–xxx Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis Qiao Zhao a, Yining Zeng b,e, Yanbin Yin c, Yunqiao Pu d,e, Lisa A. Jackson a,e, Nancy L. Engle e,f, Madhavi Z. Martin e,f, Timothy J. Tschaplinski e,f, Shi-You Ding b,e, Arthur J. Ragauskas d,e, ⇑ Richard A. Dixon a,e,g, a Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA b Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA c Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA d Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA, USA e BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA f Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA g Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA article info abstract Article history: Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (À)-pinoresinol to (À)-lariciresinol in Available online xxxx Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detect- Keywords: able in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized Lignan genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different Lignin set of genes.
    [Show full text]
  • Nutraceuticals Brian Lockwood
    CjigVXZji^XVah HZXdcYZY^i^dc 7g^VcAdX`lddY 00 Prelim 2/3/07 18:51 Page i Nutraceuticals 00 Prelim 2/3/07 18:51 Page ii 00 Prelim 2/3/07 18:51 Page iii Nutraceuticals A guide for healthcare professionals Second edition Brian Lockwood BPharm, PhD, MRPharmS Senior Lecturer in Pharmacy, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK London • Chicago 00 Prelim 2/3/07 18:51 Page iv Published by the Pharmaceutical Press An imprint of RPS Publishing 1 Lambeth High Street, London SE1 7JN, UK 100 South Atkinson Road, Suite 200, Grayslake, IL 60030–7820, USA © Pharmaceutical Press 2007 is a trade mark of RPS Publishing RPS Publishing is the publishing organisation of the Royal Pharmaceutical Society of Great Britain First edition published 2002 Second edition published 2007 Typeset by Type Study, Scarborough, North Yorkshire Printed in Great Britain by TJ International, Padstow, Cornwall ISBN 978 0 85369 659 9 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the copyright holder. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. The right of Brian Lockwood to be identified as the author of this work has been asserted by him in accordance with sections 77 and 78 and subject to section 79(6) of the Copyright, Designs and Patents Act, 1988.
    [Show full text]
  • Medicinal Properties of Selected Asparagus Species: a Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele
    Chapter Medicinal Properties of Selected Asparagus Species: A Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele Abstract Asparagus species are naturally distributed along Asia, Africa, and Europe and are known to have numerous biological properties. This review article was aimed to provide an organized summary of current studies on the traditional uses, phy- tochemistry, and pharmacological and toxicological studies of Asparagus laricinus Burch., Asparagus africanus Lam., Asparagus officinalis L., Asparagus racemosus Willd., and Asparagus densiflorus (Kunth) Jessop to attain and establish new insights for further researches. Information used in this review was obtained from electronic database including PubMed central, Google scholars, Science direct, Scopus, and Sabinet. Based on the present findings, the existing literature still presents some breaches about the mechanism of action of various constituents of these plants, and their relation to other plant compounds in poly-herbal formulations, as well as their long-term use and safety. More in-depth studies are still needed for active compounds and biological activities of Asparagus laricinus, Asparagus africanus, and Asparagus densiflorus. Therefore, innumerable opportunities and possibilities for investigation are still available in novel areas of these plants for future research stud¬ies. It can be concluded that all selected Asparagus species have tremendous potential to improve human health and the pharmacological activities of these plants can be attributed to bioactive phytochemicals they possess. Keywords: Asparagaceae, Asparagus africanus lam., Asparagus densiflorus (kunth) Jessop, Asparagus laricinus Burch., Asparagus officinalis L., Asparagus racemosus Willd., pharmacological actions, phytochemistry 1. Introduction Historically, plants were used for numerous purposes for mankind in general, inter alia, feeding and catering, culinary spices, medicine, various forms of cosmetics, symbols in worship and for a variety of ornamental goods.
    [Show full text]
  • Anticancer Activity of Lignan from the Aerial Parts of Saussurea Salicifolia (L.) DC
    Vol. 27, 2009, Special Issue Czech J. Food Sci. Anticancer Activity of Lignan from the Aerial Parts of Saussurea salicifolia (L.) DC. G. CHUNSRiiMYATAV1, 2*, I. HOZA1, P. VALÁšEK1, S. SKROVANKOVÁ1, D. BANZRAgcH2 and N. TsEVEgsUREN3 1Department of Food Engineering, Tomas Bata University in Zlin, 760 01 Zlín, Czech Republic; 2 Institute of Chemistry and Chemical Technology, Mongolian Academy Sciences, Ulaanbaatar, MON 51 Mongolia; 3Department of Organic Chemistry, Faculty of Chemistry, National University of Mongolia, Ulaanbaatar, Mongolia, *E-mail: [email protected] Abstract: Aerial parts of Saussurea salicifolia (L.) DC were studied for their lignan and flavonoids in solvent chloroform and n-butanol of ethanolic extract. Isolation and identification of phenolic compounds of the chloroform and n-butanol fractions were performed with Dionex HPLC-DAD system with water-methanol gradients in 4 different wave lengths (235 nm, 254 nm, 280 nm and 340 nm), using online UV and LC-MS as described previously. 9-OH-pinoresinol which is a lignan with anticancer activity was dominated in the chloroform fraction, whereas mainly flavonoid glycosides like quercetin-3-O-galactoside, apigenin-7-O-rhamnoside with anti-inflammatory effect were detected in the n-butanol fraction. Additionally, 9-OH-pinoresinol was also found in the n-butanol fraction. Anticancer tests were conducted in leukemia mouse lymphoma cells L5178Y at a concentration of 10 μg/ml of test compound. Crude ethanol extract of S. salicifolia reduced the growth of leukemia mouse lymphoma cells L5178Y to 23.8%. Keywords: flavonoids; Saussurea salicifolia; anticancer activity; Dionex HPLC-DAD system INTRODUCTION several species of Saussurea by other scientists in the world have revealed the presence of interest- Saussurea salicifolia is a medicinal plant belong- ing bioactive compounds like flavonoids (Jiang ing to genus of Saussurea of Asteraceae family.
    [Show full text]
  • A Cytotoxic C-Glycosylated Derivative of Apigenin from the Leaves Of
    Revista Brasileira de Farmacognosia 26 (2016) 763–766 ww w.elsevier.com/locate/bjp Short communication A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum a,b,∗ c,d Mohamed I.S. Abdelhady , Amira Abdel Motaal a Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt b Pharmacognosy Department, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia c Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt d Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt a b s t r a c t a r t i c l e i n f o Article history: The standardized 80% ethanolic extract of the leaves of Ocimum basilicum var. thyrsiflorum (L.) Benth., Received 12 February 2016 Lamiaceae, growing in KSA, exhibited a significant antioxidant activity compared to the ethyl acetate and Accepted 7 June 2016 butanol extracts, which was correlated to its higher phenolic and flavonoid contents. Chromatographic Available online 20 July 2016 separation of the 80% ethanol extract resulted in the isolation of ten known compounds; cinnamic acid, gallic acid, methylgallate, ellagic acid, methyl ellagic acid, apigenin, luteolin, vitexin, isovitexin, and 3 -O- Keywords: acetylvitexin. Compound 3 -O-acetylvitexin, a C-glycosylated derivative of apigenin, was isolated for the Ocimum basilicum first time from genus Ocimum. The 80% ethanolic extract and 3 -O-acetylvitexin showed significant cyto- HCT116 toxic activities against the HCT human colon cancer cell line [IC values 22.3 ± 1.1 and 16.8 ± 2.0 ␮g/ml Cytotoxic 116 50 ␮ Antioxidant (35.4 M), respectively].
    [Show full text]
  • Influence of the Nuclear Hormone Receptor Axis in the Progression and Treatment of Hormone Dependent Cancers
    Influence of the nuclear hormone receptor axis in the progression and treatment of hormone dependent cancers A dissertation submitted to the Division of Research and Advanced Studies at the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctorate of Philosophy (Ph.D.) In the Department of Cell and Cancer Biology of the College of Medicine 2007 by Janet K. Hess-Wilson B.A., Wittenberg University, 2000 Committee Chair: Karen E. Knudsen, Ph.D. Abstract Due to its pivotal role in prostatic growth and survival, the androgen receptor (AR) is the primary target of disseminated prostate cancer (CaP), as achieved via androgen deprivation therapy (ADT). Unfortunately, ADT is circumvented by restoration of AR activity, resulting in ADT resistant tumors for which there is no alternate treatment option. Through multiple mechanisms, reactivation of the AR specifically underlies the progression to therapy resistant tumors. The environmentally prevalent endocrine disrupting compound (EDC), bisphenol A (BPA) is able to activate specific somatically mutated ARs commonly found in CaP, resulting in androgen-independent proliferation of CaP cells. To directly assess the effect of BPA on ADT, we used an in vivo xenograft model of CaP that expresses a BPA-sensitive mutant AR, and mimics standard human cytotoxic response to ADT, followed by subsequent tumor re-growth. When tumor- bearing animals were exposed to environmentally relevant levels of BPA during ADT, the tumors failed therapy more rapidly (compared to placebo controls), with AR re- activation and concomitant increased tumor cell proliferation. These data suggest that environmentally relevant exposure to EDCs may reduce the efficacy of mainline ADT for CaP.
    [Show full text]
  • Multi-Discipline Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 211801Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review NDA/BLA Multidisciplinary Review and Evaluation NDA 211801 IBSRELA (tenapanor) NDA/BLA Multidisciplinary Review and Evaluation Application Type New Drug Application (NDA) Application Number(s) 211801 (IND #108,732) Priority or Standard Standard Submit Date(s) 09/12/2018 Received Date(s) 09/12/2018 PDUFA Goal Date 09/12/2019 Division/Office Division of Gastroenterology and Inborn Errors Products (DGIEP)/ Office of Drug Evaluation III (ODE III) Review Completion Date 09/10/2019 Established/Proper Name Tenapanor (RDX5791; AZD1722) (Proposed) Trade Name Ibsrela Pharmacologic Class Sodium/hydrogen exchanger 3 (NHE3) inhibitor Code name Applicant Ardelyx, Inc. Dosage form Oral tablets Applicant proposed Dosing 50 mg orally twice daily Regimen Applicant Proposed Treatment of Irritable Bowel Syndrome with Constipation (IBS-C) in Indication(s)/Population(s) Adults Applicant Proposed 440630006 SNOMED CT Indication Disease Term for each Proposed Indication Recommendation on Approval Regulatory Action Recommended Treatment of Irritable Bowel Syndrome with Constipation (IBS-C) in Indication(s)/Population(s) Adults (if applicable) Recommended Dosing 50 mg orally twice daily Regimen i Version date: September 12, 2018 Reference ID: 4490899 NDA/BLA Multidisciplinary Review and Evaluation NDA 211801 IBSRELA
    [Show full text]
  • Phytoestrogen Concentrations in Serum and Spot
    698 Cancer Epidemiology, Biomarkers & Prevention Phytoestrogen Concentrations in Serum and Spot Urine as Biomarkers for Dietary Phytoestrogen Intake and Their Relation to Breast Cancer Risk in European Prospective Investigation of Cancer and Nutrition-Norfolk Philip B. Grace,1 James I. Taylor,1 Yen-Ling Low,1 Robert N. Luben,2 Angela A. Mulligan,2 Nigel P. Botting,3 Mitch Dowsett,4 Ailsa A. Welch,2 Kay-Tee Khaw,2 Nick J. Wareham,2 Nick E. Day,2 and Sheila A. Bingham1,2 1MRC Dunn Human Nutrition Unit, Cambridge, United Kingdom; 2European Prospective Investigation of Cancer and Nutrition, Institute of Public Health and Strangeways Research Laboratories, Cambridge, United Kingdom; 3School of Chemistry, University of St. Andrews, Fife, United Kingdom; and 4Royal Marsden Hospital, London, United Kingdom Abstract Subjects of this study consisted of 333 women (aged 45– creatinine) correlated strongly with that in serum, with 75 years) drawn from a large United Kingdom prospec- Pearson correlation coefficients > 0.8. There were sig- tive study of diet and cancer, the European Prospective nificant relationships (P < 0.02) between both urinary Investigation of Cancer and Nutrition-Norfolk study. and serum concentrations of isoflavones across increas- Using newly developed gas chromatography/mass ing tertiles of dietary intakes. Urinary enterodiol and spectrometry and liquid chromatography/mass spectro- enterolactone and serum enterolactone were signifi- metry methods incorporating triply 13C-labeled stand- cantly correlated with dietary fiber intake (r =0.13– ards, seven phytoestrogens (daidzein, genistein, 0.29). Exposure to all isoflavones was associated with glycitein, O-desmethylangolensin, equol, enterodiol, increased breast cancer risk, significantly so for equol and enterolactone) were measured in 114 spot urines and daidzein.
    [Show full text]
  • Hydrolysis of Methyl Benzoate from Piper Arboreum by Naupactus Bipes Beetle J
    J. Braz. Chem. Soc., Vol. 20, No. 3, 560-563, 2009. Printed in Brazil - ©2009 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Hydrolysis of Methyl Benzoate from Piper arboreum by Naupactus bipes Beetle Clécio S. Ramos and Massuo J. Kato* Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo-SP, Brazil O 3-geranil-4-hidroxibenzoato de metila (1), um novo produto natural, foi isolado das folhas de Piper arboreum (Piperaceae). O metabolismo das folhas de P. arboreum pelo besouro Naupactus Short Report bipes (Germar, 1824 - Coleoptera: Curculionidae) resultou na biotransformação de 1 para o ácido 3-geranil-4-hidroxibenzoico (2). As estruturas dos metabólitos 1 e 2 foram determinadas com base na interpretação dos dados espectroscópicos de EM, IR, RMN de 1H e de 13C. A new natural product was isolated from Piper arboreum (Piperaceae) leaves, the methyl 3-geranyl-4-hydroxybenzoate (1). The metabolism of P. arboreum leaves by Naupactus bipes beetle (Germar, 1824 - Coleoptera: Curculionidae) led to the hydrolysis of 1 to 3-geranyl-4- hydroxybenzoic acid (2). The structures of both compounds were determined based on spectroscopic analysis (1H and 13C NMR, MS, and IR). Keywords: Piper arboreum, prenylated benzoic acid, piperaceae, biotransformation, Naupactus bipes Introduction Experimental Piper arboreum is a shrub with approximately 3 m Instrumentation and chromatography materials height and it is popularly known as long pepper, rosemary- of-Angola or wood-of-Angola.1 P. arboreum has been used IR spectra were measured in KBr pellets on a Perkin-Elmer in Brazil as tea and for treatment of rheumatisms, bronchitis, infrared spectrometer model 1750.
    [Show full text]
  • Urinary and Serum Concentrations of Seven Phytoestrogens in a Human Reference Population Subset
    Journal of Exposure Analysis and Environmental Epidemiology (2003) 13, 276–282 r 2003 Nature Publishing Group All rights reserved 1053-4245/03/$25.00 www.nature.com/jea Urinary and serum concentrations of seven phytoestrogens in a human reference population subset LIZA VALENTI´ N-BLASINI, BENJAMIN C. BLOUNT, SAMUEL P. CAUDILL, AND LARRY L. NEEDHAM National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA Diets rich in naturally occurring plant estrogens (phytoestrogens) are strongly associated with a decreased risk for cancer and heart disease in humans. Phytoestrogens have estrogenic and, in some cases, antiestrogenic and antiandrogenic properties, and may contribute to the protective effect of some diets. However, little information is available about the levels of these phytoestrogens in the general US population. Therefore, levels of phytoestrogenswere determined in urine (N ¼ 199) and serum (N ¼ 208) samples taken from a nonrepresentative subset of adults who participated in NHANES III, 1988– 1994. The phytoestrogens quantified were the lignans (enterolactone, enterodiol, matairesinol); the isoflavones (genistein, daidzein, equol, O- desmethylangolensin); and coumestrol (urine only). Phytoestrogens with the highest mean urinary levels were enterolactone (512 ng/ml), daidzein(317 ng/ ml), and genistein (129 ng/ml). In serum, the concentrations were much less and the relative order was reversed, with genistein having the highest mean level (4.7 ng/ml), followed by daidzein (3.9 ng/ml) and enterolactone (3.6 ng/ml). Highly significant correlations of phytoestrogen levels in urineand serum samples from the same persons were observed for enterolactone, enterodiol, genistein, and daidzein. Determination of phytoestrogen concentrations in large study populations will give a better insight into the actual dietary exposure to these biologically active compounds in the US population.
    [Show full text]
  • Biosynthesis of Lignans and Norlignans
    J Wood Sci (2007) 53:273–284 © The Japan Wood Research Society 2007 DOI 10.1007/s10086-007-0892-x REVIEW ARTICLE Shiro Suzuki · Toshiaki Umezawa Biosynthesis of lignans and norlignans Received: January 24, 2007 / Accepted: March 13, 2007 / Published online: June 5, 2007 Abstract Lignans and norlignans constitute abundant class- tic lignans in cancer therapies and sesamin in health and es of phenylpropanoids. Biosynthesis of these compounds nutrition. In addition, lignans and norlignans are often bio- has received widespread interest, mainly because they have synthesized and deposited in signifi cant amounts in the various clinically important biological activities. In addition, heartwood region of trees as a metabolic event of heart- lignans and norlignans are often biosynthesized and depos- wood formation, probably preventing heart rot by heart-rot ited in signifi cant amounts in the heartwood region of trees fungi. Because heartwood formation is specifi c to trees and as a metabolic event of heartwood formation, probably pre- does not occur in herbaceous plants, biosynthesis of lignans venting heart rot by heart-rot fungi. Furthermore, biosyn- and norlignans can be a clue to elucidating heartwood for- thetic reactions of lignans and norlignans involve unique mation mechanisms. stereochemical properties that are of great interest in terms Furthermore, biosynthetic reactions of lignans and nor- of bioorganic chemistry and are expected to provide a lignans involve unique stereochemical properties that are model for biomimetic chemistry and its application. We of great interest in terms of bioorganic chemistry and are outline the recent advances in the study of lignan and nor- expected to provide a model for biomimetic chemistry and lignan biosynthesis.
    [Show full text]
  • Research Article Sesamin: a Naturally Occurring Lignan Inhibits CYP3A4 by Antagonizing the Pregnane X Receptor Activation
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 242810, 15 pages doi:10.1155/2012/242810 Research Article Sesamin: A Naturally Occurring Lignan Inhibits CYP3A4 by Antagonizing the Pregnane X Receptor Activation Yun-Ping Lim,1, 2 Chia-Yun Ma,1 Cheng-Ling Liu,3 Yu-Hsien Lin,1 Miao-Lin Hu,3 Jih-Jung Chen,4 Dong-Zong Hung,1, 2 Wen-Tsong Hsieh,5 and Jin-Ding Huang6, 7 1 Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan 2 Department of Emergency, Toxicology Center, China Medical University Hospital, Taichung 40447, Taiwan 3 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan 4 Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan 5 School of Medicine and Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan 6 Institute of Biopharmaceutical Sciences, Medical College, National Cheng Kung University, Tainan 70101, Taiwan 7 Department of Pharmacology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan Correspondence should be addressed to Yun-Ping Lim, [email protected] Received 14 December 2011; Revised 30 January 2012; Accepted 6 February 2012 Academic Editor: Pradeep Visen Copyright © 2012 Yun-Ping Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Inconsistent expression and regulation of drug-metabolizing enzymes (DMEs) are common causes of adverse drug effects in some drugs with a narrow therapeutic index (TI).
    [Show full text]