On $ K $-Connected-Homogeneous Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Finite Highly Regular Vertex-Coloured Graphs
Classification of Finite Highly Regular Vertex-Coloured Graphs∗ Irene Heinrich, Thomas Schneider, and Pascal Schweitzer TU Kaiserslautern February 23, 2021 Abstract A coloured graph is k-ultrahomogeneous if every isomorphism between two induced sub- graphs of order at most k extends to an automorphism. A coloured graph is k-tuple regular if the number of vertices adjacent to every vertex in a set S of order at most k depends only on the isomorphism type of the subgraph induced by S. We classify the finite vertex-coloured k-ultrahomogeneous graphs and the finite vertex- coloured ℓ-tuple regular graphs for k ≥ 4 and ℓ ≥ 5, respectively. Our theorem in particular classifies finite vertex-coloured ultrahomogeneous graphs, where ultrahomogeneous means the graph is simultaneously k-ultrahomogeneous for all k ∈ N. 1 Introduction A structure is ultrahomogeneous (UH)1 if every isomorphism between two induced substructures within the structure extends to an automorphism of the entire structure. Ultrahomogeneous structures have been extensively studied in the literature (see related work below), in part because they find important applications in model theory and Ramsey theory in particular due to their construction as Fra¨ıss´elimits (see [Mac11]). In this paper we focus on finite simple graphs. A graph is k-ultrahomogeneous (k-UH) if every isomorphism between two induced subgraphs of order at most k extends to an automorphism. Note that a graph is 1-ultrahomogeneous if and only if it is transitive. Moreover, the 2-ultrahomogeneous graphs are precisely the rank 3 graphs, that is, transitive graphs with an automorphism group that acts transitively on pairs of adjacent vertices and also on pairs of non-adjacent vertices. -
Strongly Regular Graphs
Strongly regular graphs Peter J. Cameron Queen Mary, University of London London E1 4NS U.K. Draft, April 2001 Abstract Strongly regular graphs form an important class of graphs which lie somewhere between the highly structured and the apparently random. This chapter gives an introduction to these graphs with pointers to more detailed surveys of particular topics. 1 An example Consider the Petersen graph: ZZ Z u Z Z Z P ¢B Z B PP ¢ uB ¢ uB Z ¢ B ¢ u Z¢ B B uZ u ¢ B ¢ Z B ¢ B ¢ ZB ¢ S B u uS ¢ B S¢ u u 1 Of course, this graph has far too many remarkable properties for even a brief survey here. (It is the subject of a book [17].) We focus on a few of its properties: it has ten vertices, valency 3, diameter 2, and girth 5. Of course these properties are not all independent. Simple counting arguments show that a trivalent graph with diameter 2 has at most ten vertices, with equality if and only it has girth 5; and, dually, a trivalent graph with girth 5 has at least ten vertices, with equality if and only it has diameter 2. The conditions \diameter 2 and girth 5" can be rewritten thus: two adjacent vertices have no common neighbours; two non-adjacent vertices have exactly one common neighbour. Replacing the particular numbers 10, 3, 0, 1 here by general parameters, we come to the definition of a strongly regular graph: Definition A strongly regular graph with parameters (n; k; λ, µ) (for short, a srg(n; k; λ, µ)) is a graph on n vertices which is regular with valency k and has the following properties: any two adjacent vertices have exactly λ common neighbours; • any two nonadjacent vertices have exactly µ common neighbours. -
Distance-Regular Graphs Arxiv:1410.6294V2 [Math.CO]
Distance-regular graphs∗ Edwin R. van Dam Jack H. Koolen Department of Econometrics and O.R. School of Mathematical Sciences Tilburg University University of Science and Technology of China The Netherlands and [email protected] Wu Wen-Tsun Key Laboratory of Mathematics of CAS Hefei, Anhui, 230026, China [email protected] Hajime Tanaka Research Center for Pure and Applied Mathematics Graduate School of Information Sciences Tohoku University Sendai 980-8579, Japan [email protected] Mathematics Subject Classifications: 05E30, 05Cxx, 05Exx Abstract This is a survey of distance-regular graphs. We present an introduction to distance- regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph `BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written. Keywords: Distance-regular graph; survey; association scheme; P -polynomial; Q- polynomial; geometric arXiv:1410.6294v2 [math.CO] 15 Apr 2016 ∗This version is published in the Electronic Journal of Combinatorics (2016), #DS22. 1 Contents 1 Introduction6 2 An introduction to distance-regular graphs8 2.1 Definition . .8 2.2 A few examples . .9 2.2.1 The complete graph . .9 2.2.2 The polygons . .9 2.2.3 The Petersen graph and other Odd graphs . .9 2.3 Which graphs are determined by their intersection array? . .9 2.4 Some combinatorial conditions for the intersection array . 11 2.5 The spectrum of eigenvalues and multiplicities . 12 2.6 Association schemes . 15 2.7 The Q-polynomial property . -
EINDHOVEN UNIVERSITY of TECHNOLOGY Department of Mathematics and Computing Science MASTER's THESIS on the P-Rank of the Adjacenc
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computing Science MASTER'S THESIS On the p-rank of the adjacency matrices of strongly regular graphs C.A. van Eijl Supervisor: Prof. dr. A.E. Brouwer October 1991 Contents Introduction 3 1 Preliminaries 5 1.1 Matrix theory ............................•....... S 1.2 Graph theory . .. 7 1.2.1 General concepts. • . .. 7 1.2.2 Strongly regular graphs ... • . • . .. 7 1.3 Cod..es ............,.."".,,,.,,,,,,...,,,,.....,,....,,..,,.,. 9 1.4 Groups........................................ 9 2 The Smith normal form 11 2.1 Definitions and results . .. 11 2.2 Applications of the Smith nonnal fonn ....................... 13 3 On the p-rank of strongly regular graphs with integral eigenvalues 16 3.1 Prelim inari es . .. 16 3.2 General theorems .................................. 17 3.3 Bounds from subgraphs and examples . • . .. 19 3.4 Switching-equivalent graphs . .. 21 4 On the p-rank of Paley graphs Z4 4.1 Circulants ...................................... 24 4.2 Paley graphs . • . .. 26 5 Bounds from character theory 32 5.1 Group representations and modules •••. • . .. 32 5.2 Olaracter theory . • . .. 34 5.2.1 Generalities................................. 34 5.2.2 Ordinary characters ........... • . • • . .. 36 5.2.3 Modular characters .......•...........•....•.... 37 5.3 Application to strongly regular graphs . • . • . • • .. 39 5.4 Rank 3 graphs . • . • • . .. 42 6 Results 4S 6.1 The Higman-Sims family .............................. 45 6.2 The McLaughlin graph and its subconstituents. .. 47 6.3 Graphs related to the McLaughlin graph by switching . .. 50 6.4 Other graphs derived from S (4, 7,23) . ., 52 6.5 The Cameron graph ............... .. 54 6.6 The Hoffmann-Singleton graph and related graphs. ., 54 6.7 Graphs derived from the Golay codes . -
ON K-CONNECTED-HOMOGENEOUS GRAPHS
ON k-CONNECTED-HOMOGENEOUS GRAPHS ALICE DEVILLERS, JOANNA B. FAWCETT, CHERYL E. PRAEGER, JIN-XIN ZHOU Abstract. A graph Γ is k-connected-homogeneous (k-CH) if k is a positive integer and any isomorphism between connected induced subgraphs of order at most k extends to an automor- phism of Γ, and connected-homogeneous (CH) if this property holds for all k. Locally finite, locally connected graphs often fail to be 4-CH because of a combinatorial obstruction called the unique x property; we prove that this property holds for locally strongly regular graphs under various purely combinatorial assumptions. We then classify the locally finite, locally connected 4-CH graphs. We also classify the locally finite, locally disconnected 4-CH graphs containing 3- cycles and induced 4-cycles, and prove that, with the possible exception of locally disconnected graphs containing 3-cycles but no induced 4-cycles, every finite 7-CH graph is CH. 1. introduction A (simple undirected) graph Γ is homogeneous if any isomorphism between finite induced subgraphs extends to an automorphism of Γ. An analogous definition can be made for any relational structure, and the study of these highly symmetric objects dates back to Fra¨ıss´e[16]. The finite and countably infinite homogeneous graphs have been classified [17, 20, 30], and very few families of graphs arise (see Theorem 2.8). Consequently, various relaxations of homogeneity have been considered. For example, a graph Γ is k-homogeneous if k is a positive integer and any isomorphism between induced subgraphs of order at most k extends to an automorphism of Γ. -
Graphs with Cocktail Party Μ-Graphs
Journal of Algebraic Combinatorics, 18, 79–98, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. 1-Homogeneous Graphs with Cocktail Party µ-Graphs ALEKSANDAR JURISIˇ C´ [email protected] IMFM and Nova Gorica Polytechnic, Slovenia JACK KOOLEN [email protected] Division of Applied Mathematics, KAIST, Daejeon, South Korea Received September 19, 2000; Revised December 3, 2002 Abstract. Let be a graph with diameter d ≥ 2. Recall is 1-homogeneous (in the sense of Nomura) whenever for every edge xy of the distance partition {{z ∈ V () | ∂(z, y) = i,∂(x, z) = j}|0 ≤ i, j ≤ d} is equitable and its parameters do not depend on the edge xy. Let be 1-homogeneous. Then is distance-regular and also locally strongly regular with parameters (v , k ,λ,µ), where v = k, k = a1, (v − k − 1)µ = k (k − 1 − λ ) and c2 ≥ µ + 1, since a µ-graph is a regular graph with valency µ .Ifc2 = µ + 1 and c2 = 1, then is a Terwilliger graph, i.e., all the µ-graphs of are complete. In [11] we classified the Terwilliger 1- homogeneous graphs with c2 ≥ 2 and obtained that there are only three such examples. In this article we consider the case c2 = µ + 2 ≥ 3, i.e., the case when the µ-graphs of are the Cocktail Party graphs, and obtain that either λ = 0,µ = 2or is one of the following graphs: (i) a Johnson graph J(2m, m) with m ≥ 2, (ii) a folded Johnson graph J¯(4m, 2m) with m ≥ 3, (iii) a halved m-cube with m ≥ 4, (iv) a folded halved (2m)-cube with m ≥ 5, (v) a Cocktail Party graph Km×2 with m ≥ 3, (vi) the Schl¨afli graph, (vii) the Gosset graph. -
Extension Properties of Structures
Charles University in Prague Faculty of Mathematics and Physics DOCTORAL THESIS David Hartman Extension properties of structures Computer Science Institute of Charles University Supervisor of the doctoral thesis: Prof. RNDr. Jaroslav Neˇsetˇril,DrSc. Study programme: Informatics Specialization: 414 Prague 2014 I would like to express my gratitude to my advisor Prof. RNDr. Jaroslav Neˇsetˇril, DrSc. for patient leadership and the inspiration he gave me to explore many areas of mathematics as well as his inspiration in personal life more generally. Further- more, I would like to thank my coauthors Jan Hubiˇcka and Dragan Maˇsulovi´c for helping me to establish ideas and for the realization of these ideas in their final published form. Moreover thanks are due to Peter J. Cameron for posing several questions about classes of homomorphism-homogeneous structures in our personal communication that subsequently led to one of the publications as well as to John K. Truss whose interest in my work after the first Workshop on Ho- mogeneous Structures supported my further progress. Many thanks belong to Andrew Goodall who provide an extensive feedback for many parts of the thesis. Finally, the greatest thanks belong to my family, my beloved wife Mireˇcka and our children Emma Alexandra and Hugo, as altogether the main source of joy, happiness and in fact meaning of life. I declare that I carried out this doctoral thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. -
Two Problems on Homogeneous Structures, Revisited
Contemporary Mathematics Two problems on homogeneous structures, revisited Gregory Cherlin Abstract. We take up Peter Cameron’s problem of the classification of count- ably infinite graphs which are homogeneous as metric spaces in the graph metric [Cam98]. We give an explicit catalog of the known examples, together with results supporting the conjecture that the catalog may be complete, or nearly so. We begin in Part I with a presentation of Fra¨ıss´e’s theory of amalgamation classes and the classification of homogeneous structures, with emphasis on the case of homogeneous metric spaces, from the discovery of the Urysohn space to the connection with topological dynamics developed in [KPT05]. We then turn to a discussion of the known metrically homogeneous graphs in Part II. This includes a 5-parameter family of homogeneous metric spaces whose connections with topological dynamics remain to be worked out. In the case of diameter 4, we find a variety of examples buried in the tables at the end of [Che98], which we decode and correlate with our catalog. In the final Part we revisit an old chestnut from the theory of homoge- neous structures, namely the problem of approximating the generic triangle free graph by finite graphs. Little is known about this, but we rephrase the problem more explicitly in terms of finite geometries. In that form it leads to questions that seem appropriate for design theorists, as well as some ques- tions that involve structures small enough to be explored computationally. We also show, following a suggestion of Peter Cameron (1996), that while strongly regular graphs provide some interesting examples, one must look beyond this class in general for the desired approximations. -
Automorphism Groups, Isomorphism, Reconstruction (Chapter 27 of the Handbook of Combinatorics)
Automorphism groups, isomorphism, reconstruction (Chapter 27 of the Handbook of Combinatorics) L´aszl´oBabai∗ E¨otv¨os University, Budapest, and The University of Chicago June 12, 1994 Contents 0 Introduction 3 0.1 Graphsandgroups ............................... 3 0.2 Isomorphisms, categories, reconstruction . ......... 4 1 Definitions, examples 5 1.1 Measuresofsymmetry ............................. 5 1.2 Reconstructionfromlinegraphs . .... 8 1.3 Automorphism groups: reduction to 3-connected graphs . .......... 10 1.4 Automorphismgroupsofplanargraphs . .... 11 1.5 Matrix representation. Eigenvalue multiplicity . ........... 12 1.6 Asymmetry, rigidity. Almost all graphs. Unlabelled counting ........ 14 2 Graph products 16 2.1 Prime factorization, automorphism group . ....... 17 2.2 TheCartesianproduct ............................. 18 2.3 The categorical product; cancellation laws . ........ 18 2.4 Strongproduct ................................. 19 2.5 Lexicographicproduct . .. .. 19 3 Cayley graphs and vertex-transitive graphs 20 3.1 Definition,symmetry .............................. 20 3.2 Symmetryandconnectivity . 22 3.3 Matchings, independent sets, long cycles . ....... 23 3.4 Subgraphs,chromaticnumber . .. 26 ∗Section 2 was written in collaboration with Wilfried Imrich 1 3.5 Neighborhoods, clumps, Gallai–Aschbacher decomposition ......... 27 3.6 Rateofgrowth ................................. 29 3.7 Ends....................................... 32 3.8 Isoperimetry, random walks, diameter . ...... 33 3.9 Automorphismsofmaps ........................... -
Topics in Algebraic Graph Theory
Topics in Algebraic Graph Theory The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph symmetry). These areas have links with other areas of mathematics, such as logic and harmonic analysis, and are increasingly being used in such areas as computer networks where symmetry is an important feature. Other books cover portions of this material, but this book is unusual in covering both of these aspects and there are no other books with such a wide scope. This book contains ten expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory, linear algebra and group theory. Each chapter concludes with an extensive list of references. LOWELL W. BEINEKE is Schrey Professor of Mathematics at Indiana University- Purdue University Fort Wayne. His graph theory interests include topological graph theory, line graphs, tournaments, decompositions and vulnerability. With Robin J. Wilson he has edited Selected Topics in Graph Theory (3 volumes), Applications of Graph Theory and Graph Connections.Heiscurrently the Editor of the College Mathematics Journal. ROBIN J. WILSON is Head of the Pure Mathematics Department at the Open University and Gresham Professor of Geometry, London. He has written and edited many books on graph theory and combinatorics and on the history of mathematics, including Introduction to Graph Theory and Four Colours Suffice. -
Limit Laws, Homogenizable Structures and Their Connections
UPPSALA DISSERTATIONS IN MATHEMATICS 104 Limit Laws, Homogenizable Structures and Their Connections Ove Ahlman Department of Mathematics Uppsala University UPPSALA 2018 Dissertation presented at Uppsala University to be publicly examined in Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 16 February 2018 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Dugald Macpherson (Department of pure mathematics, University of Leeds). Abstract Ahlman, O. 2018. Limit Laws, Homogenizable Structures and Their Connections. (Gränsvärdeslagar, Homogeniserbara Strukturer och Deras Samband). Uppsala Dissertations in Mathematics 104. 43 pp. Uppsala: Department of Mathematics. ISBN 978-91-506-2672-8. This thesis is in the field of mathematical logic and especially model theory. The thesis contain six papers where the common theme is the Rado graph R. Some of the interesting abstract properties of R are that it is simple, homogeneous (and thus countably categorical), has SU-rank 1 and trivial dependence. The Rado graph is possible to generate in a probabilistic way. If we let K be the set of all finite graphs then we obtain R as the structure which satisfy all properties which hold with assymptotic probability 1 in K. On the other hand, since the Rado graph is homogeneous, it is also possible to generate it as a Fraïssé-limit of its age. Paper I studies the binary structures which are simple, countably categorical, with SU-rank 1 and trivial algebraic closure. The main theorem shows that these structures are all possible to generate using a similar probabilistic method which is used to generate the Rado graph. -
Is There a Mclaughlin Geometry?
Is there a McLaughlin geometry? Leonard H. Soicher School of Mathematical Sciences Queen Mary, University of London Mile End Road, London E1 4NS, UK email: [email protected] February 9, 2006 Dedicated to Charles Leedham-Green on the occasion of his 65th birthday Abstract It has long been an open problem whether or not there exists a partial geometry with parameters (s, t, α) = (4, 27, 2). Such a partial geometry, which we call a McLaughlin geometry, would have the McLaughlin graph as point graph. In this note we use tools from computational group theory and computational graph theory to show that a McLaughlin geometry cannot have certain automorphisms, nor can such a geometry satisfy the Axiom of Pasch. 1 Introduction The McLaughlin graph M was constructed by J. McLaughlin for the construc- tion of his sporadic simple group McL [10]. The graph M has full automorphism group Aut (M) =∼ McL: 2, acting transitively with permutation rank 3 on the set of vertices. Indeed, M is a particularly fascinating strongly regular graph, with parameters (v, k, λ, µ) = (275, 112, 30, 56), and in [7], it is shown that M is the unique strongly regular graph with these parameters. Partial geometries were introduced by Bose [1] to generalize certain classes of finite geometries. Partial geometries and related concepts will be defined in the next section; a good concise introduction is contained in [5]. It has long been an open problem whether or not there exists a partial geometry with parameters (s, t, α) = (4, 27, 2) (see [3, 9, 5, 11]).