Sequential Tikhonov Regularization: an Alternative Way for Integral Inversion … Fachbeitrag

Total Page:16

File Type:pdf, Size:1020Kb

Sequential Tikhonov Regularization: an Alternative Way for Integral Inversion … Fachbeitrag Eshagh, Sequential Tikhonov Regularization: An Alternative Way for Integral Inversion … Fachbeitrag Sequential Tikhonov Regularization: An Alternative Way for Integral Inversion of Satellite Gradiometric Data Mehdi Eshagh Abstract of this mission will be a set of spherical harmonic coeffi- Numerous regularization methods exist for solving the ill- cients of the Earth’s gravity field and their corresponding posed problem of downward continuation of satellite grav- errors to degree and order 200 corresponding to a spatial ity gradiometry (SGG) data to gravity anomaly at sea level. resolution of 0.9° × 0.9° (100 km × 100 km). This set is Generally, the use of a dense set of data is recommended in expected to deliver the geoid and gravity anomalies with the downward continuation. However, when such dense data accuracies of 1–2 cm and 1 mGal, respectively from joint are used some of the regularization methods are not efficient inversion of SGG and satellite-to-satellite tracking data. and applicable. In this paper, a sequential way of using the GOCE measures the full tensor of gravitation, contain- Tikhonov regularization is developed for solving large systems ing second-order partial derivatives of the geopotential, and compared to methods of direct truncated singular val- in the gradiometer reference frame, second by second, ue decomposition and iterative methods of range restricted during its life. However, it should be stated that the full minimum residual, algebraic reconstruction technique, ν and tensor of gravitation is not measured with the same ac- conjugate gradient for recovering gravity anomaly at sea level curacy and there are highly sensitive and less sensitive from the SGG data. Numerical studies show that the sequen- gradiometer axes. GOCE will provide a very dense set of tial Tikhonov regularization is comparable to the conjugate the SGG data all over the globe, except polar gaps. The gradient and yields similar result. SGG data of GOCE can be used directly to recover gravity anomalies at sea level. Zusammenfassung The problem of determining the gravity anomalies at Zur Stabilisierung des unterbestimmten Problems der har- sea level from SGG data was the issue investigated by monischen Fortsetzung von Satellitengradiometriedaten zu Reed (1973). He used the second-order partial derivatives Schwere anoma lien auf Geoidhöhe gibt es unterschiedliche of the extended Stokes formula to present the integral Regularisierungsmethoden. Im Allgemeinen wird die Verwen- relation between gravity anomaly and the SGG data and dung eines räumlich dichten Datensatzes für die harmonische inverted them to recover the gravity anomaly. Since in- Fortsetzung nach unten empfohlen. Aber für diesen Fall sind version of such integral formulas is an ill-posed problem einige der Regularisierungsverfahren numerisch ineffizient he used some a priori constraints for regularization of und daher nicht gut anwendbar. In diesem Beitrag wird ein the integral equations. Later on, this idea was followed sequenzielles Verfahren der Tikhonov-Regularisierung für die by Xu (1992) who presented a technique to invert the Fortsetzung großer Datensätze vorgestellt und mit direkten integral formulas without a priori information and it was Regularisierungsmethoden, wie der abgeschnittenen/abge- further investigated in Xu (1998) by comparing it with brochenen Singulärwertzerlegung, sowie iterativen Methoden, some direct regularization methods. Koch and Kusche wie der entfernungsbeschränkten Minimierung der Residuen, (2002) developed an iterative method for simultaneous der algebraischen Rekonstruktionsmethode, der ν Methode estimation of variance components and regularization und der Methode der konjugierten Gradienten, verglichen. parameter. Kotsakis (2007) used the integral inversion for Numerische Untersuchungen zeigen, dass die sequenzielle recovering the gravity anomaly at sea level by a cova- Tikhonov-Regularisierung mit der Methode der konjugierten riance-adaptive method. Eshagh (2009) used the integral Gradienten vergleichbar ist und zu gleichwertigen Ergebnis- inversion method for the recovery of the anomalies from sen führt. full gravitational tensor. Xu (2009) presented a method based on generalized cross validation for simultaneous Keywords: bias-correction, integral inversion, iterative estimation of variance components and regularization of regularization, Krylov subspaces, Tikhonov regularization system of equations. Janak et al. (2009) carried out the inversion of full gravitational tensor to gravity anomalies using the truncated singular value decomposition. Inver- sion of stochastically modified integral of second-order radial derivative of the extended Stokes formula was 1 Introduction done by Eshagh (2011a). Regional gravity field recovery from SGG data using least-squares collocation was done The gravity field and steady-state ocean circulation ex- by Tscherning (1988, 1989) and Arabelos and Tscherning plorer (GOCE) (ESA 1999, 2008) is the recent European (1990, 1993, 1995 and 1999). Tscherning et al. (1990) Space Agency satellite mission which uses the satellite studied three different methods of regional gravity field gravity gradiometry (SGG) technique. The main product recovery: least-squares collocation, Fourier Transform 136. Jg. 2/2011 zfv 113 Fachbeitrag Eshagh, Sequential Tikhonov Regularization: An Alternative Way for Integral Inversion … and the integral approach which was further developed where t = R r, D = 1 − 2t cos ψ + t 2 and r is the geo- by Eshagh (2011b). centric distance of P. In each one of the reviewed studies one regularization Eq. (1a) is the Fredholm integral equation of the first method was considered for inversion of integral formu- kind, and inversion of such an integral is an ill-posed las. However, it is obvious that there are more regular- problem. The integral in the right hand side of this equa- ization methods with their own benefits. In this study, tion should be discretized and solved. Let us present the the goal is to investigate some of these regularization discretized integral (1a) in the following matrix form: methods, in the same conditions, to see which one of T 2 them is suitable for recovering gravity anomalies from Ax = L − ε , E{εε } = σ 0Q and E{ε} = 0 , (2) the SGG data. These regularization methods are classi- fied into two main groups of direct and iterative. Here, where A is the n × m coefficient matrix (right hand side direct methods of Tikhonov regularization (TR) (Tikhonov of Eq. (1a)), L is the n × 1 vector of Trr (left hand side of 1963) and the truncated singular value decomposition Eq. (1a)), e is the n × 1 vector of error of L, x is the m × 1 (TSVD) (Hansen 1998) are considered as well as iterative vector of unknown parameters or the gravity anomalies methods of ν (Brakhage 1987), algebraic reconstruction at sea level, E stands for statistical expectation operator, 2 technique (ART) (Kaczmarz 1937), the range restricted σ 0 is the a priori variance factor which is equal to 1 and generalized minimum residual (RRGMRES) (Calvetti et al. Q is the variance-covariance matrix of observations 2000) and conjugate gradient (CG) (Hanke 1995). Also a which is considered an identity matrix in this study. new strategy to use the TR in a sequential way is simply Since the matrix A is derived after discretization of the developed and named sequential TR (STR), which is ap- integral formula (1a), e. g. based on the simple quadra- plied for recovering the gravity anomalies at sea level ture method, then it will be ill-conditioned. This means from the SGG data. that the condition number of A will be large so that by inverting the system of equations (2), the errors of ob- servables are amplified and destroy the solution. This unwanted property can be controlled by regularization 2 Second-order radial derivative of which means to neglect the high frequencies of the solu- Stokes’ formula tion. Numerous methods have been presented for solving such an ill-posed problem. These methods are so-called The second-order radial derivative of geopotential is the regularization. The next section will present an overview simplest and the most important element of the gravita- for some of them. tional tensor. It is simple because its mathematical for- mulation is easier than the other gradients, and it is im- portant as it has the most power with respect to the other gradients. Let the following estimator for this gradient at 3 A conceptual overview of regularization satellite level be (Reed 1973): methods R T (P ) = S (r, ψ)∆g (Q)dσ , (1a) The regularization methods are divided into two catego- rr 4π ∫∫ rr σ0 ries of direct and iterative. Iterative methods are impor- tant as they avoid the direct inversion of the system of 2 2 where Trr (P ) = ∂ T ∂r , T stands for disturbing potential, equations. This is the reason that the iterative methods R is the mean radius of the Earth, Dg (Q) is the gravity are recommended for large systems. In spite of the it- anomaly at the integration point Q, y is the geocentric erative methods, the direct methods solve the system by angle between the computation and integration points P direct inversion of its coefficients matrix, which is a com- and Q, s0 cap size of integration as we are integrating over plicated problem when it is large and ill-conditioned. In a spherical cap (which is an assumption with respect to the the following sections, some of the direct and iterative realistic full scale inversion problem) and refer to it later methods are reviewed. 2 2 in the numerical example, and Srr (r, ψ) = ∂ S (r, ψ) ∂r (where S (r, ψ) is the extended Stokes’ function) is the kernel of integral (Reed 1973, Eq. (5.35)): 3.1 Direct methods 2 t 3 3(1 − t ) 4 1 + t 2 10 This subsection presents1 − ttwocos ψwell-known+ D methods of = − − − − − + − + Srr (r, ψ) 2 (1 t cos ψ) 5 3 3 18DTSVD2 3andt co sTRψ for15 solving6 ln ill-conditioned system of equa- R D D D D 2 tions. Both of these methods have a shortcoming of 2 t 3 3(1 − t ) 4 1 + t 2 10 1 − t cos ψ + D working with large matrices.
Recommended publications
  • Instrumental Regression in Partially Linear Models
    10-167 Research Group: Econometrics and Statistics September, 2009 Instrumental Regression in Partially Linear Models JEAN-PIERRE FLORENS, JAN JOHANNES AND SEBASTIEN VAN BELLEGEM INSTRUMENTAL REGRESSION IN PARTIALLY LINEAR MODELS∗ Jean-Pierre Florens1 Jan Johannes2 Sebastien´ Van Bellegem3 First version: January 24, 2008. This version: September 10, 2009 Abstract We consider the semiparametric regression Xtβ+φ(Z) where β and φ( ) are unknown · slope coefficient vector and function, and where the variables (X,Z) are endogeneous. We propose necessary and sufficient conditions for the identification of the parameters in the presence of instrumental variables. We also focus on the estimation of β. An incorrect parameterization of φ may generally lead to an inconsistent estimator of β, whereas even consistent nonparametric estimators for φ imply a slow rate of convergence of the estimator of β. An additional complication is that the solution of the equation necessitates the inversion of a compact operator that has to be estimated nonparametri- cally. In general this inversion is not stable, thus the estimation of β is ill-posed. In this paper, a √n-consistent estimator for β is derived under mild assumptions. One of these assumptions is given by the so-called source condition that is explicitly interprated in the paper. Finally we show that the estimator achieves the semiparametric efficiency bound, even if the model is heteroscedastic. Monte Carlo simulations demonstrate the reasonable performance of the estimation procedure on finite samples. Keywords: Partially linear model, semiparametric regression, instrumental variables, endo- geneity, ill-posed inverse problem, Tikhonov regularization, root-N consistent estimation, semiparametric efficiency bound JEL classifications: Primary C14; secondary C30 ∗We are grateful to R.
    [Show full text]
  • PARAMETER DETERMINATION for TIKHONOV REGULARIZATION PROBLEMS in GENERAL FORM∗ 1. Introduction. We Are Concerned with the Solut
    PARAMETER DETERMINATION FOR TIKHONOV REGULARIZATION PROBLEMS IN GENERAL FORM∗ Y. PARK† , L. REICHEL‡ , G. RODRIGUEZ§ , AND X. YU¶ Abstract. Tikhonov regularization is one of the most popular methods for computing an approx- imate solution of linear discrete ill-posed problems with error-contaminated data. A regularization parameter λ > 0 balances the influence of a fidelity term, which measures how well the data are approximated, and of a regularization term, which dampens the propagation of the data error into the computed approximate solution. The value of the regularization parameter is important for the quality of the computed solution: a too large value of λ > 0 gives an over-smoothed solution that lacks details that the desired solution may have, while a too small value yields a computed solution that is unnecessarily, and possibly severely, contaminated by propagated error. When a fairly ac- curate estimate of the norm of the error in the data is known, a suitable value of λ often can be determined with the aid of the discrepancy principle. This paper is concerned with the situation when the discrepancy principle cannot be applied. It then can be quite difficult to determine a suit- able value of λ. We consider the situation when the Tikhonov regularization problem is in general form, i.e., when the regularization term is determined by a regularization matrix different from the identity, and describe an extension of the COSE method for determining the regularization param- eter λ in this situation. This method has previously been discussed for Tikhonov regularization in standard form, i.e., for the situation when the regularization matrix is the identity.
    [Show full text]
  • Statistical Foundations of Data Science
    Statistical Foundations of Data Science Jianqing Fan Runze Li Cun-Hui Zhang Hui Zou i Preface Big data are ubiquitous. They come in varying volume, velocity, and va- riety. They have a deep impact on systems such as storages, communications and computing architectures and analysis such as statistics, computation, op- timization, and privacy. Engulfed by a multitude of applications, data science aims to address the large-scale challenges of data analysis, turning big data into smart data for decision making and knowledge discoveries. Data science integrates theories and methods from statistics, optimization, mathematical science, computer science, and information science to extract knowledge, make decisions, discover new insights, and reveal new phenomena from data. The concept of data science has appeared in the literature for several decades and has been interpreted differently by different researchers. It has nowadays be- come a multi-disciplinary field that distills knowledge in various disciplines to develop new methods, processes, algorithms and systems for knowledge dis- covery from various kinds of data, which can be either low or high dimensional, and either structured, unstructured or semi-structured. Statistical modeling plays critical roles in the analysis of complex and heterogeneous data and quantifies uncertainties of scientific hypotheses and statistical results. This book introduces commonly-used statistical models, contemporary sta- tistical machine learning techniques and algorithms, along with their mathe- matical insights and statistical theories. It aims to serve as a graduate-level textbook on the statistical foundations of data science as well as a research monograph on sparsity, covariance learning, machine learning and statistical inference. For a one-semester graduate level course, it may cover Chapters 2, 3, 9, 10, 12, 13 and some topics selected from the remaining chapters.
    [Show full text]
  • Regularized Radial Basis Function Models for Stochastic Simulation
    Proceedings of the 2014 Winter Simulation Conference A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds. REGULARIZED RADIAL BASIS FUNCTION MODELS FOR STOCHASTIC SIMULATION Yibo Ji Sujin Kim Department of Industrial and Systems Engineering National University of Singapore 119260, Singapore ABSTRACT We propose a new radial basis function (RBF) model for stochastic simulation, called regularized RBF (R-RBF). We construct the R-RBF model by minimizing a regularized loss over a reproducing kernel Hilbert space (RKHS) associated with RBFs. The model can flexibly incorporate various types of RBFs including those with conditionally positive definite basis. To estimate the model prediction error, we first represent the RKHS as a stochastic process associated to the RBFs. We then show that the prediction model obtained from the stochastic process is equivalent to the R-RBF model and derive the associated mean squared error. We propose a new criterion for efficient parameter estimation based on the closed form of the leave-one-out cross validation error for R-RBF models. Numerical results show that R-RBF models are more robust, and yet fairly accurate compared to stochastic kriging models. 1 INTRODUCTION In this paper, we aim to develop a radial basis function (RBF) model to approximate a real-valued smooth function using noisy observations obtained via black-box simulations. The observations are assumed to capture the information on the true function f through the commonly-used additive error model, d y = f (x) + e(x); x 2 X ⊂ R ; 2 where the random noise is characterized by a normal random variable e(x) ∼ N 0;se (x) , whose variance is determined by a continuously differentiable variance function se : X ! R.
    [Show full text]
  • Regularization Tools
    Regularization Tools A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems Version 4.1 for Matlab 7.3 Per Christian Hansen Informatics and Mathematical Modelling Building 321, Technical University of Denmark DK-2800 Lyngby, Denmark [email protected] http://www.imm.dtu.dk/~pch March 2008 The software described in this report was originally published in Numerical Algorithms 6 (1994), pp. 1{35. The current version is published in Numer. Algo. 46 (2007), pp. 189{194, and it is available from www.netlib.org/numeralgo and www.mathworks.com/matlabcentral/fileexchange Contents Changes from Earlier Versions 3 1 Introduction 5 2 Discrete Ill-Posed Problems and their Regularization 9 2.1 Discrete Ill-Posed Problems . 9 2.2 Regularization Methods . 11 2.3 SVD and Generalized SVD . 13 2.3.1 The Singular Value Decomposition . 13 2.3.2 The Generalized Singular Value Decomposition . 14 2.4 The Discrete Picard Condition and Filter Factors . 16 2.5 The L-Curve . 18 2.6 Transformation to Standard Form . 21 2.6.1 Transformation for Direct Methods . 21 2.6.2 Transformation for Iterative Methods . 22 2.6.3 Norm Relations etc. 24 2.7 Direct Regularization Methods . 25 2.7.1 Tikhonov Regularization . 25 2.7.2 Least Squares with a Quadratic Constraint . 25 2.7.3 TSVD, MTSVD, and TGSVD . 26 2.7.4 Damped SVD/GSVD . 27 2.7.5 Maximum Entropy Regularization . 28 2.7.6 Truncated Total Least Squares . 29 2.8 Iterative Regularization Methods . 29 2.8.1 Conjugate Gradients and LSQR .
    [Show full text]
  • On the Determination of Proper Regularization Parameter
    Universität Stuttgart Geodätisches Institut On the determination of proper regularization parameter α-weighted BLE via A-optimal design and its comparison with the results derived by numerical methods and ridge regression Bachelorarbeit im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart Kun Qian Stuttgart, Februar 2017 Betreuer: Dr.-Ing. Jianqing Cai Universität Stuttgart Prof. Dr.-Ing. Nico Sneeuw Universität Stuttgart Erklärung der Urheberschaft Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Ort, Datum Unterschrift III Abstract In this thesis, several numerical regularization methods and the ridge regression, which can help improve improper conditions and solve ill-posed problems, are reviewed. The deter- mination of the optimal regularization parameter via A-optimal design, the optimal uniform Tikhonov-Phillips regularization (a-weighted biased linear estimation), which minimizes the trace of the mean square error matrix MSE(ˆx), is also introduced. Moreover, the comparison of the results derived by A-optimal design and results derived by numerical heuristic methods, such as L-curve, Generalized Cross Validation and the method of dichotomy is demonstrated. According to the comparison, the A-optimal design regularization parameter has been shown to have minimum trace of MSE(ˆx) and its determination has better efficiency. VII Contents List of Figures IX List of Tables XI 1 Introduction 1 2 Least Squares Method and Ill-Posed Problems 3 2.1 The Special Gauss-Markov medel .
    [Show full text]
  • The L-Curve and Its Use in the Numerical Treatment of Inverse Problems 1 Introduction
    The L-curve and its use in the numerical treatment of inverse problems P. C. Hansen Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark Abstract The L-curve is a log-log plot of the norm of a regularized solution versus the norm of the corresponding residual norm. It is a convenient graphical tool for displaying the trade-off between the size of a regularized solution and its fit to the given data, as the regularization parameter varies. The L-curve thus gives insight into the regularizing properties of the underlying regularization method, and it is an aid in choosing an appropriate regu- larization parameter for the given data. In this chapter we summarize the main properties of the L-curve, and demonstrate by examples its usefulness and its limitations both as an analysis tool and as a method for choosing the regularization parameter. 1 Introduction Practically all regularization methods for computing stable solutions to inverse problems involve a trade-off between the “size” of the reg- ularized solution and the quality of the fit that it provides to the given data. What distinguishes the various regularization methods is how they measure these quantities, and how they decide on the optimal trade-off between the two quantities. For example, given the discrete linear least-squares problem min kA x¡bk2 (which specializes to A x = b if A is square), the classical regularization method devel- oped independently by Phillips [31] and Tikhonov [35] (but usually referred to as Tikhonov regularization) amounts — in its most general 1 form — to solving the minimization problem n o 2 2 2 x¸ = arg min kA x ¡ bk2 + ¸ kL (x ¡ x0)k2 ; (1) where ¸ is a real regularization parameter that must be chosen by the user.
    [Show full text]
  • Arxiv:1707.06852V1 [Stat.ME] 21 Jul 2017 Dynamical System Dx T = G(T, X , Θ), (1.1) Dt T Where G Is a Known Function and Θ Is a Parameter
    A Statistical Perspective on Inverse and Inverse Regression Problems Debashis Chatterjeea, Sourabh Bhattacharyaa,∗ aInterdisciplinary Statistical Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata - 700108, India Abstract Inverse problems, where in broad sense the task is to learn from the noisy response about some unknown function, usually represented as the argument of some known functional form, has received wide attention in the general scientific disciplines. How- ever, in mainstream statistics such inverse problem paradigm does not seem to be as popular. In this article we provide a brief overview of such problems from a statistical, particularly Bayesian, perspective. We also compare and contrast the above class of problems with the perhaps more statistically familiar inverse regression problems, arguing that this class of problems contains the traditional class of inverse problems. In course of our review we point out that the statistical literature is very scarce with respect to both the inverse paradigms, and substantial research work is still necessary to develop the fields. Keywords: Bayesian analysis, Inverse problems, Inverse regression problems, Regularization, Reproducing Kernel Hilbert Space (RKHS), Palaeoclimate reconstruction 1. Introduction The similarities and dissimilarities between inverse problems and the more tradi- tional forward problems are usually not clearly explained in the literature, and often “ill-posed” is the term used to loosely characterize inverse problems. We point out that these two problems may have the same goal or different goal, while both consider the same model given the data. We first elucidate using the traditional case of deterministic differential equations, that the goals of the two problems may be the same.
    [Show full text]
  • Bayesian Analysis of Linear Inverse Problems with Applications in Economics and Finance
    Alma Mater Studiorum - Universit`adi Bologna DOTTORATO DI RICERCA IN ECONOMIA Ciclo XX Settore scienti¯co disciplinare di a®erenza: SECS-P/05 - ECONOMETRIA. Bayesian Analysis of Linear Inverse Problems with Applications in Economics and Finance Presentata da: Anna SIMONI Coordinatore Dottorato: Relatore: Andrea ICHINO Sergio PASTORELLO Esame Finale Anno 2009 Contents 1 Introduction 1 2 Regularized Posterior in linear ill-Posed Inverse Problems 6 2.1 Introduction . 6 2.2 The Model . 8 2.2.1 Sampling Probability Measure . 8 2.2.2 Prior Speci¯cation and Identi¯cation . 8 2.2.3 Construction of the Bayesian Experiment . 10 2.3 Solution of the Ill-Posed Inverse Problem . 10 2.3.1 Tikhonov Regularized Posterior distribution . 11 2.3.2 Tikhonov regularization in the Prior Variance Hilbert scale . 12 2.4 Asymptotic Analysis . 13 2.4.1 Speed of convergence with Tikhonov regularization in the Prior Vari- ance Hilbert Scale . 16 2.5 The case with unknown operator K ...................... 17 2.5.1 Asymptotic Analysis . 18 2.6 The case with di®erent operator for each observation . 20 2.6.1 Marginalization of the Bayesian experiment . 21 2.6.2 Asymptotic Analysis . 23 2.7 Conclusions . 24 2.8 Appendix A: Proofs . 24 2.9 Appendix B: Examples . 35 2.10 Appendix C: Monte Carlo Simulations . 38 3 On the Regularization Power of the Prior Distribution in Linear ill-Posed Inverse Problems 43 3.1 Introduction . 43 3.2 Asymptotic Analysis . 47 3.3 A particular case . 50 3.4 g as an hyperparameter . 52 3.5 Conclusion . 54 3.6 Appendix A: proofs .
    [Show full text]
  • Regularization of Least Squares Problems
    Regularization of Least Squares Problems Heinrich Voss [email protected] Hamburg University of Technology Institute of Numerical Simulation TUHH Heinrich Voss Least Squares Problems Valencia 2010 1 / 82 Outline 1 Introduction 2 Least Squares Problems 3 Ill-conditioned problems 4 Regularization 5 Large problems TUHH Heinrich Voss Least Squares Problems Valencia 2010 2 / 82 Introduction Well-posed / ill-posed problems Back in 1923 Hadamard introduced the concept of well-posed and ill-posed problems. A problem is well-posed, if — it is solvable — its solution is unique — its solution depends continuously on system parameters (i.e. arbitrary small perturbation of the data can not cause arbitrary large perturbation of the solution) Otherwise it is ill-posed. According to Hadamard’s philosophy, ill-posed problems are actually ill-posed, in the sense that the underlying model is wrong. TUHH Heinrich Voss Least Squares Problems Valencia 2010 4 / 82 Introduction Ill-posed problems Ill-posed problems often arise in the form of inverse problems in many areas of science and engineering. Ill-posed problems arise quite naturally if one is interested in determining the internal structure of a physical system from the system’s measured behavior, or in determining the unknown input that gives rise to a measured output signal. Examples are — computerized tomography, where the density inside a body is reconstructed from the loss of intensity at detectors when scanning the body with relatively thin X-ray beams, and thus tumors or other anomalies are detected. — solving diffusion equations in negative time direction to detect the source of pollution from measurements Further examples appear in acoustics, astrometry, electromagnetic scattering, geophysics, optics, image restoration, signal processing, and others.
    [Show full text]
  • Kernel Instrumental Variable Regression
    Kernel Instrumental Variable Regression Rahul Singh Maneesh Sahani Arthur Gretton MIT Economics Gatsby Unit, UCL Gatsby Unit, UCL [email protected] [email protected] [email protected] Abstract Instrumental variable (IV) regression is a strategy for learning causal relationships in observational data. If measurements of input X and output Y are confounded, the causal relationship can nonetheless be identified if an instrumental variable Z is available that influences X directly, but is conditionally independent of Y given X and the unmeasured confounder. The classic two-stage least squares algorithm (2SLS) simplifies the estimation problem by modeling all relationships as linear functions. We propose kernel instrumental variable regression (KIV), a nonparametric generalization of 2SLS, modeling relations among X, Y , and Z as nonlinear functions in reproducing kernel Hilbert spaces (RKHSs). We prove the consistency of KIV under mild assumptions, and derive conditions under which convergence occurs at the minimax optimal rate for unconfounded, single-stage RKHS regression. In doing so, we obtain an efficient ratio between training sample sizes used in the algorithm’s first and second stages. In experiments, KIV outperforms state of the art alternatives for nonparametric IV regression. 1 Introduction Instrumental variable regression is a method in causal statistics for estimating the counterfactual effect of input X on output Y using observational data [60]. If measurements of (X, Y ) are confounded, the causal relationship–also called the structural relationship–can nonetheless be identified if an instrumental variable Z is available, which is independent of Y conditional on X and the unmeasured confounder. Intuitively, Z only influences Y via X, identifying the counterfactual relationship of interest.
    [Show full text]
  • Determination of the Regularization Parameter to Combine Heterogeneous Observations in Regional Gravity Field Modeling
    remote sensing Article Determination of the Regularization Parameter to Combine Heterogeneous Observations in Regional Gravity Field Modeling Qing Liu 1,* , Michael Schmidt 1, Roland Pail 2 and Martin Willberg 2 1 Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstr. 21, 80333 Munich, Germany; [email protected] 2 Institute for Astronomical and Physical Geodesy, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany; [email protected] (R.P.); [email protected] (M.W.) * Correspondence: [email protected] Received: 16 April 2020; Accepted: 17 May 2020; Published: 19 May 2020 Abstract: Various types of heterogeneous observations can be combined within a parameter estimation process using spherical radial basis functions (SRBFs) for regional gravity field refinement. In this process, regularization is in most cases inevitable, and choosing an appropriate value for the regularization parameter is a crucial issue. This study discusses the drawbacks of two frequently used methods for choosing the regularization parameter, which are the L-curve method and the variance component estimation (VCE). To overcome their drawbacks, two approaches for the regularization parameter determination are proposed, which combine the L-curve method and VCE. The first approach, denoted as “VCE-Lc”, starts with the calculation of the relative weights between the observation techniques by means of VCE. Based on these weights, the L-curve method is applied to determine the regularization parameter. In the second approach, called “Lc-VCE”, the L-curve method determines first the regularization parameter, and it is set to be fixed during the calculation of the relative weights between the observation techniques from VCE.
    [Show full text]