A Conserved Role for FGF Signaling in Chordate Otic/Atrial Placode Formation ⁎ Matthew J

Total Page:16

File Type:pdf, Size:1020Kb

A Conserved Role for FGF Signaling in Chordate Otic/Atrial Placode Formation ⁎ Matthew J View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Developmental Biology 312 (2007) 245–257 www.elsevier.com/developmentalbiology A conserved role for FGF signaling in chordate otic/atrial placode formation ⁎ Matthew J. Kourakis, William C. Smith Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA Received for publication 23 April 2007; revised 12 September 2007; accepted 13 September 2007 Available online 22 September 2007 Abstract The widely held view that neurogenic placodes are vertebrate novelties has been challenged by morphological and molecular data from tunicates suggesting that placodes predate the vertebrate divergence. Here, we examine requirements for the development of the tunicate atrial siphon primordium, thought to share homology with the vertebrate otic placode. In vertebrates, FGF signaling is required for otic placode induction and for later events following placode invagination, including elaboration and patterning of the inner ear. We show that results from perturbation of the FGF pathway in the ascidian Ciona support a similar role for this pathway: inhibition with MEK or Fgfr inhibitor at tailbud stages in Ciona results in a larva which fails to form atrial placodes; inhibition during metamorphosis disrupts development of the atrial siphon and gill slits, structures which form where invaginated atrial siphon ectoderm apposes pharyngeal endoderm. We show that laser ablation of atrial primordium ectoderm also results in a failure to form gill slits in the underlying endoderm. Our data suggest interactions required for formation of the atrial siphon and highlight the role of atrial ectoderm during gill slit morphogenesis. © 2007 Elsevier Inc. All rights reserved. Keywords: Ascidian; Chordate; Placode; Atrial siphon primordium; Gill slits; FGF signaling Introduction 2004; Mazet et al., 2005), implying that these structures predate vertebrates. Proposed phylogenies in which cephalochordata Vertebrate neurogenic placodes give rise to specialized and vertebrata are sister taxa – e.g., those based on morphology features of the sensory system including the organs of the inner and 18S rDNA, 28S rDNA and mitochondrial gene sequence ear, the lateral line system and cranial sensory ganglia. (Berril, 1955; Cameron et al., 2000; Glenner et al., 2004; Neurogenic placodes, along with neural crest, have been Turbeville et al., 1994; Winchell et al., 2002) – are consistent regarded as important innovations unique to the vertebrate with the appearance of placodes in the chordate ancestor, clade and, in fact, as defining characters which allowed for a followed by an independent loss in the cephalochordate lineage. wide range of adaptive behaviors including an increasingly Recent phylogenetic models based on concatenated protein predatory lifestyle (Northcutt and Gans, 1983). Phylogenies sequences conflict with this view and suggest that tunicates, not which had placed the cephalochordates as the sister group to cephalochordates, are the true sister group to vertebrates vertebrates, which together with the tunicates comprise the (Bourlat et al., 2006; Delsuc et al., 2006; Philippe et al., chordate phylum, were consistent with this claim as placodes 2005; Vienne and Pontarotti, 2006). Under this scenario, have not been observed in the filter feeding amphioxus. An neurogenic placodes were present before the vertebrate– increasing body of morphological and molecular evidence tunicate divergence, while their apparent absence in cephalo- shows, however, that neurogenic placodes are present in the chordates may represent the ancestral state. tunicata (Bassham and Postlethwait, 2005; Manni et al., 2001, Tunicate structures which have been homologized to vertebrate placodes show the same basic morphology, thicken- ings within the embryonic ectoderm, and include the paired ⁎ Corresponding author. atrial siphon primordia, the oral or stomodeal siphon primor- E-mail address: [email protected] (W.C. Smith). dium, the neurohypophyseal organ and the adhesive organ 0012-1606/$ - see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.ydbio.2007.09.020 246 M.J. Kourakis, W.C. Smith / Developmental Biology 312 (2007) 245–257 precursor or rostral placode (Manni et al., 2004). In vertebrates, (Bassham and Postlethwait, 2005; Jefferies, 1986; Katz, 1983; different inductive cues for different placodes lead to the Manni et al., 2004; Mazet and Shimeld, 2005; Schlosser, 2005; upregulation of a similar suite of genes (Baker and Bronner- Wada et al., 1998). Both otic and atrial siphon precursors appear Fraser, 2001; McCabe et al., 2004). Vertebrate placodes are during development as paired rings of columnar cells, at about defined by combinatorial gene expression patterns including the level of the hindbrain in vertebrates and its equivalent in genes from the six, pax, eya, pitx, fox and dll families. Similar ascidians. A similar morphogenesis also characterizes these gene expression patterns have been observed in putative structures. The otic placode invaginates and pinches off placode homologs of ascidians and in the larvacean Oiko- forming the otic vesicle. The process which initiates the pleura (Bassham and Postlethwait, 2005; Mazet et al., 2005; formation of the atrial siphon also begins with invagination of Mazet and Shimeld, 2005). the atrial primordium, and, as described in the colonial species A one-to-one correspondence between tunicate and verte- Botryllus, the invagination pinches off as a vesicle separate brate placodes may not always be easy to ascertain— from the overlying ectoderm (Manni et al., 2002). The ascidian vertebrates have more placodes than tunicates, so homology atrial primordium is also neurogenic, a feature of most relationships are not likely to be direct in all cases. Vertebrate vertebrate cranial placodes: Bone and Ryan (1978) described placode number may be the result of morphological duplica- the cupular organ of the atrial siphon of Ciona, a structure tions of any one of the ancestral placodes, in which case a similar to the vertebrate mechanosensory hair cell, except that single ascidian placode may share homology to more than one the ascidian cupular organ is not secondarily innervated as are vertebrate placode, as has been proposed for the neurohypo- vertebrate hair cells; Mackie and Singla (2003) describe the physial duct which may be homologous to vertebrate olfactory, hydrodynamic capsular organ of Chelyosoma as consistent with adenohypophysial and hypothalamic placodes (Manni et al., an atrial-otic homology, but like the cupular organ, the capsular 2001). Alternatively, ascidians may have fewer placodes than organ is not secondarily innervated. In the larvacean tunicate the common ancestor, a loss perhaps explained by a com- Oikopleura, however, the proposed otic placode homolog, the paratively simplified larval body plan and a sessile adult phase. Langerhans organ, receives mechanosensory stimulation Finally, certain authors posit the existence of a pan-placodal through ciliated cells that are secondarily innervated (Bassham field from which all neurogenic placodes develop—some and Postlethwait, 2005). vertebrate placodes may have evolved through specification of In vertebrates, functional studies have shown that the novel territories within this field (Baker and Bronner-Fraser, fibroblast growth factor (FGF) pathway plays a role in the 2001; Schlosser, 2002). specification and formation of the otic placode and, as well, that Combined morphological, positional and expression data this pathway is important after placode formation during and can provide at least a first approximation of homology following the invagination phase, including the morphogenetic between vertebrate placodes and tunicate structures (Bassham movements which give rise to the inner ear. Before otic placode and Postlethwait, 2005; Manni et al., 2001; Mazet and formation, members of the Fgf family are expressed in the Shimeld, 2005; Schlosser, 2005). Several authors have periotic mesenchyme beneath the future site of the otic proposed homology between the atrial siphon primordia of placodes. Studies in fish, mouse and chick have shown that, ascidians, which form the adult atrial siphon, or exhalant in particular, members of the Fgf3/7/10 and Fgf8/17/18 families siphon, out of which water, waste and gametes are directed, play a prominent role during placode specification and and the otic placodes of vertebrates, which contribute to induction (Ladher et al., 2005; Leger and Brand, 2002; Liu structures of the ear (Bassham and Postlethwait, 2005; et al., 2003; Maroon et al., 2002; Phillips et al., 2001; Solomon Jefferies, 1986; Katz, 1983; Manni et al., 2004; Mazet and et al., 2004; Wright and Mansour, 2003). Later in vertebrate Shimeld, 2005; Schlosser, 2005; Wada et al., 1998). In Ciona embryogenesis, the placode invaginates and forms the otic cyst, savignyi and Ciona intestinalis, the atrial siphon primordia are and FGF from the hindbrain helps to direct patterning and evident in larvae as paired ring-shaped structures of morphogenesis of ear formation (Liu et al., 2003; Phillips et al., approximately six cells in the lateral ectoderm of the trunk, 2001; Wright and Mansour, 2003). just anterior to the notochord and posterior to the sensory In this report, we test the hypothesis that the otic placode vesicle (Katz, 1983). During metamorphosis each
Recommended publications
  • Ascidian Cannibalism Correlates with Larval Behavior and Adult Distribution
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1988 Elsevier Ltd. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Young, C. M. (1988). Ascidian cannibalism correlates with larval behavior and adult distribution. Journal of Experimental Marine Biology and Ecology, 117(1), 9-26. doi:10.1016/0022-0981(88)90068-8 J. Exp. Mar. Bioi. £Col., 1988, Vol. 117, pp. 9-26 9 Elsevier JEM 01042 Ascidian cannibalism correlates with larval behavior and adult distribution Craig M. Young Department ofLarval Ecology. Harbor Branch Oceanographic Institution, Fort Pierce, Florida. U.S.A. (Received 24 March 1987; revision received 9 December 1987; accepted 22 December 1987) Abstract: In the San Juan Islands, Washington, solitary ascidians .that occur in dense monospecific aggregations demonstrate gregarious settlement as larvae, whereas species that occur as isolated individuals do not. All gregarious species reject their own eggs and larvae as food, but nongregarious species consume conspecific eggs and larvae. Moreover, the rejection mechanism is species-specific in some cases. Correla­ tion analysis suggests that species specificity of the rejection response has a basis in siphon diameter, egg density, and larval size, but not in number of oral tentacles, or tentacle branching. One strongly cannibalistic species, Corella inflata Huntsman, avoids consuming its own eggs and newly released tadpoles by a unique brooding mechanism that involves floating eggs, negative geotaxis after hatching, and adult orientation. Key words: Ascidian; Cannibalism; Distribution; Larva; Settlement behavior INTRODUCTION Many sessile marine invertebrates, including filter-feeders such as mussels, oysters, barnacles and ascidians, occur in discrete, dense aggregations.
    [Show full text]
  • Ascidiacea, Phlebobranchia, Corellidae) in the Southern Hemisphere with Description of a New Species
    Zootaxa 3702 (2): 135–149 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3702.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:E972F88B-7981-4F38-803D-8F4F92FE6A37 The genus Corella (Ascidiacea, Phlebobranchia, Corellidae) in the Southern Hemisphere with description of a new species FRANÇOISE MONNIOT Muséum national d’Histoire naturelle, 57 rue Cuvier Fr 75231 Paris cedex 05, France.E-mail : [email protected] Abstract In the Southern Hemisphere the species attributed to Corella eumyota, Traustedt, 1882 are likely more varied than previously expected. This ascidian species was described from specimens collected at Valparaiso (Chile). Until now it was considered as a widely distributed species in the southern hemisphere. New collections from Chile and the Antarctic area have allowed to separate two species and re-establish Corella antarctica Sluiter, 1905 as a valid species (Alurralde 2013).A morphological re- examination of many specimens from the MNHN collections and especially recent surveys as CEAMARC and REVOLTA confirms that Antarctic specimens from the Antarctic Peninsula and Terre Adélie obviously differ from sub-Antarctic material more varied than previously estimated. On the other hand, C. eumyota invasive in Europe (Lambert 2004) has been shown to be the same as specimens from Chile, New Zealand and other sub-Antarctic regions. The present morphological study compares Corella from different regions and describes a new species Corella brewinae n. sp that is found living mixed with C. eumyota populations. Key words: Ascidians, Corellidae, Antarctic, Sub-Antarctic, new species Introduction The genus Corella was created by Hancock (1870) for Ascidia parallelogramma Müller, 1776.
    [Show full text]
  • Phlebobranchia of CTAW
    PHLEBOBRANCHIA PHLEBOBRANCHIA The suborder Phlebobranchia (order Enterogona) is characterised by having unpaired gonads present only on the same side of the body as the gut. As in Stolidobranchia, the body is not divided into different sections (such as thorax, abdomen and posterior abdomen) as the gut is folded up in the parietal body wall outside the pharynx and the large branchial sac occupies the whole length of the body. Usually the branchial sac (which is flat, without folds) has internal longitudinal vessels (although only vestiges remain in Agneziidae). Epicardial sacs do not persist in adults as they do in Aplousobranchia, although excretory vesicles (nephrocytes) embedded in the body wall over the gut are known to originate from the embryonic epicardium in Ascidiidae and Corellidae. Most phlebobranchs are solitary. However, Plurellidae Kott, 1973 includes both solitary and colonial forms, and Perophoridae Giard, 1872 are all colonial. Replication in Perophoridae is from ectodermal epithelium (rather than endodermal or mesodermal tissue the mesodermal tissue of the vascular stolon (rather than the endodermal tissue as in most as in Aplousobranchia). The process of replication has not been investigated in Plurellidae. Phlebobranch taxa occurring in Australia are documented in Kott (1985). Family level taxa are characterised principally by the size and form of the branchial sac including the number of branchial vessels and form of the stigmata; the form, size and position of the gonads; and the habit (colonial or solitary) of the taxon. Berrill (1950) has discussed problems in assessing the phylogeny of Perophoridae. References Berrill, N.J. (1950). The Tunicata. Ray Soc. Publs 133: 1–354 Giard, A.M.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Ascidians from Bocas Del Toro, Panama. I. Biodiversity
    Caribbean Journal of Science, Vol. 41, No. 3, 600-612, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Ascidians from Bocas del Toro, Panama. I. Biodiversity. ROSANA M. ROCHA*, SUZANA B. FARIA AND TATIANE R. MORENO Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: *[email protected] ABSTRACT.—An intensive survey of ascidian species was carried out in August 2003, in different environ- ments of the Bocas del Toro region, northwestern Panama. Most samples are from shallow waters (< 3 m) in coral reefs, among mangrove roots and in Thallasia testudines banks. Of the 58 species found, 14 are new species. Of the 26 sampling sites, the most diverse were Crawl Key Canal (9°15.050’N, 82°07.631’W), Solarte ,Island (9°17.929’N, 82°11.672’W), Wild Cane Key (9° 20؅40؅N, 82°10؅20؅W), Isla Pastores (9°14.332’N W), the bay behind the STRI Lab (9°21؅4.3؅ N, 82°15’25.6؅ W), and the entrance of Bocatorito Bay’82°19.968 (9°13.375’N, 82°12.555’W). Ascidians have been studied and reported from 31 locations within the Caribbean, and 139 species have been reported. This count will increase with the description of the 14 new species, and Bocas del Toro may be considered a region of high ascidian diversity since > 40% of the total known Caribbean ascidian fauna occurs there. KEYWORDS.—Ascidian taxonomy, Caribbean, checklist INTRODUCTION found and discuss the relationship of this fauna with that of other Caribbean loca- tions.
    [Show full text]
  • Two New Forms of Gonadotropin-Releasing Hormone in a Protochordate and the Evolutionary Implications (Neuropeptides/Reproduction/Evolution/Ascidian) JAMES F
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 10461-10464, September 1996 Neurobiology Two new forms of gonadotropin-releasing hormone in a protochordate and the evolutionary implications (neuropeptides/reproduction/evolution/ascidian) JAMES F. F. POWELL*, SABINA M. RESKA-SKINNER*, MANISH OM PRAKASH*, WOLFGANG H. FISCHERt, MINKYU PARKt, JEAN E. RIVIERt, A. GREY CRAIGt, GEORGE 0. MACKIE*, AND NANCY M. SHERWOOD*t *Department of Biology, University of Victoria, Victoria, BC Canada V8W 2Y2; and tThe Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Karl Folkers, Sunapee, NH, June 19, 1996 (received for review February 1996) ABSTRACT The neuropeptide gonadotropin-releasing with petroleum ether as described (6). Sequential HPLC hormone (GnRH) is the major regulator of reproduction in procedures in which the ion pairing agents varied were used to vertebrates. Our goal was to determine whether GnRH could purify the two GnRH peptides. Detection of GnRH in each be isolated and identified by primary structure in a proto- step of the procedure was based on antisera raised against chordate and to examine its location by immunocytochemis- lamprey GnRH (Bla-5) or salmon GnRH (GF-4) in our try. The primary structure of two novel decapeptides from the laboratory. tunicate Chelyosoma productum (class Ascidiacea) was deter- Characterization of the Primary Structure. The primary mined. Both show significant identity with vertebrate GnRH. structure of the purified peptides was determined by matrix- Tunicate GnRH-I (pGlu-His-Trp-Ser-Asp-Tyr-Phe-Lys-Pro- assisted laser desorption (MALD) mass spectrometry using Gly-NH2) has 60% of its residues conserved, compared with post-source decay (PSD) and by chemical sequence analysis mammalian GnRH, whereas tunicate GnRH-II (pGlu-His- after treatment with pyroglutamate aminopeptidase.
    [Show full text]
  • Awesome Ascidians a Guide to the Sea Squirts of New Zealand Version 2, 2016
    about this guide | about sea squirts | colour index | species index | species pages | icons | glossary inspirational invertebratesawesome ascidians a guide to the sea squirts of New Zealand Version 2, 2016 Mike Page Michelle Kelly with Blayne Herr 1 about this guide | about sea squirts | colour index | species index | species pages | icons | glossary about this guide Sea squirts are amongst the more common marine invertebrates that inhabit our coasts, our harbours, and the depths of our oceans. AWESOME ASCIDIANS is a fully illustrated e-guide to the sea squirts of New Zealand. It is designed for New Zealanders like you who live near the sea, dive and snorkel, explore our coasts, make a living from it, and for those who educate and are charged with kaitiakitanga, conservation and management of our marine realm. It is one in a series of electronic guides on New Zealand marine invertebrates that NIWA’s Coasts and Oceans centre is presently developing. The e-guide starts with a simple introduction to living sea squirts, followed by a colour index, species index, detailed individual species pages, and finally, icon explanations and a glossary of terms. As new species are discovered and described, new species pages will be added and an updated version of this e-guide will be made available online. Each sea squirt species page illustrates and describes features that enable you to differentiate the species from each other. Species are illustrated with high quality images of the animals in life. As far as possible, we have used characters that can be seen by eye or magnifying glass, and language that is non technical.
    [Show full text]
  • A Detailed Description of the Long-Overlooked Tunicate Ascidia Protecta (Ascidiacea), Based on the Type and Non-Type Specimens from the Gulf of California
    Species Diversity 26: 1–5 Published online 1 January 2021 DOI: 10.12782/specdiv.26.1 A Detailed Description of the Long-Overlooked Tunicate Ascidia protecta (Ascidiacea), Based on the Type and Non-Type Specimens from the Gulf of California Teruaki Nishikawa1,2 and Hiroshi Namikawa1 1 Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan E-mail: [email protected] 2 Corresponding author (Received 8 June 2020; Accepted 19 October 2020) http://zoobank.org/FED7D8D3-F9F5-4D12-A606-A8DEAB7D3B55 Key Words: Ascidia sydneiensis, mantle musculature, Rhodosoma, Ascidia dorsalis, Ascidia papillata, lectotype designation. Overlooked since its establishment, Ascidia sydneiensis protecta Van Name, 1945, originally described as having mantle musculature comprising short parallel fibers restricted to the dorsal margin, compared with musculature along the entire margin (except for a central muscle-free area) found in the so-called “A. sydneiensis group”, is treated as a full species, As- cidia protecta. A detailed examination of the type and non-type specimens of the latter, all collected from the Gulf of Cali- fornia, confirmed the mantle musculature arrangement in the species, as well as revealing several new features (particularly in the alimentary tract), although not supporting a protective function of the anterior tunic to retracted siphons, as sug- gested in the original description. A comparison of A. protecta was made with congeneric species with similar musculature. ern-most Gulf of California in 1991 by the late Professor Introduction Shigeko Ooishi, a taxonomist of copepods parasitic to as- cidians (Damkaer 2015). The specimens were offered to TN Ascidia protecta Van Name, 1945 was established by Van and subsequently registered in the Department of Zoology, Name (1945) for ascidians collected from the Gulf of Cali- National Museum of Nature and Science, Tsukuba (NSMT- fornia, under the trinomen Ascidia sydneiensis protecta, Pc).
    [Show full text]
  • Blood Circulation in the Ascidian Tunicate Corella Inflata (Corellidae)
    Blood circulation in the ascidian tunicate Corella inflata (Corellidae) Michael W. Konrad Sausalito, CA, United States ABSTRACT The body of the ascidian tunicate Corella inflata is relatively transparent. Thus, the circulatory system can be visualized by injecting high molecular weight fluorescein labeled dextran into the heart or the large vessels at the ends of the heart without surgery to remove the body wall. In addition, after staining with neutral red, the movement of blood cells can be easily followed to further characterize the circulatory system. The heart is two gently curved concentric tubes extending across the width of the animal. The inner myocardial tube has a partial constriction approximately in the middle. As in other tunicates, the heart is peristaltic and periodically reverses direction. During the branchial phase blood leaves the anterior end of the heart by two asymmetric vessels that connect to the two sides of the branchial basket. Blood then flows in both transverse directions through a complex system of ducts in the basket into large ventral and dorsal vessels which carry blood back to the visceral organs in the posterior of the animal. During the visceral phase blood leaves the posterior end of the heart in two vessels that repeatedly bifurcate and fan into the stomach and gonads. Blood velocity, determined by following individual cells in video frames, is high and pulsatory near the heart. A double peak in velocity at the maximum may be due to the constriction in the middle of the heart tube. Blood velocity progressively decreases with distance from the heart. In peripheral regions with vessels of small diameter blood cells frequently collide with vessel walls and cell motion is erratic.
    [Show full text]
  • Section 3.4 Invertebrates
    Hawaii-Southern California Training and Testing Final EIS/OEIS October 2018 Final Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS 3.4 Invertebrates .......................................................................................................... 3.4-1 3.4.1 Introduction ........................................................................................................ 3.4-3 3.4.2 Affected Environment ......................................................................................... 3.4-3 3.4.2.1 General Background ........................................................................... 3.4-3 3.4.2.2 Endangered Species Act-Listed Species ............................................ 3.4-15 3.4.2.3 Species Not Listed Under the Endangered Species Act .................... 3.4-20 3.4.3 Environmental Consequences .......................................................................... 3.4-29 3.4.3.1 Acoustic Stressors ............................................................................. 3.4-30 3.4.3.2 Explosive Stressors ............................................................................ 3.4-51 3.4.3.3 Energy Stressors ................................................................................ 3.4-59 3.4.3.4 Physical Disturbance and Strike Stressors ........................................ 3.4-64 3.4.3.5 Entanglement Stressors .................................................................... 3.4-85 3.4.3.6
    [Show full text]
  • Ascidiacea: Phlebobranchia)
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Not as clear as expected: what genetic data tell about Southern Hemisphere corellids (Ascidiacea: Phlebobranchia) Gastón Alurralde, María Carla de Aranzamendi, Anabela Taverna, Tamara Maggioni & Marcos Tatián To cite this article: Gastón Alurralde, María Carla de Aranzamendi, Anabela Taverna, Tamara Maggioni & Marcos Tatián (2018) Not as clear as expected: what genetic data tell about Southern Hemisphere corellids (Ascidiacea: Phlebobranchia), Journal of Natural History, 52:43-44, 2823-2831 To link to this article: https://doi.org/10.1080/00222933.2018.1553250 Published online: 21 Dec 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 JOURNAL OF NATURAL HISTORY 2018, VOL. 52, NOS. 43–44, 2823–2831 https://doi.org/10.1080/00222933.2018.1553250 Not as clear as expected: what genetic data tell about Southern Hemisphere corellids (Ascidiacea: Phlebobranchia) Gastón Alurralde a,b, María Carla de Aranzamendi a,b, Anabela Taverna a,b, Tamara Maggioni a,b and Marcos Tatián a,b aUniversidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina; bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina ABSTRACT ARTICLE HISTORY The morphology of corellids (Ascidiacea) has led to numerous mis- Received 2 May 2018 identifications and wrong taxonomic decisions over the last century. Accepted 21 November 2018 Paradoxically, the morphology has also enabled new species to be KEYWORDS fi identi ed and ancient entities to be re-established in the Southern Ascidians; Corella; COI gene; Hemisphere.
    [Show full text]
  • Conduction and Coordination in Deganglionated Ascidians
    Color profile: Disabled Composite Default screen 1626 Conduction and coordination in deganglionated ascidians G.O. Mackie and R.C. Wyeth Abstract: The behaviour of Chelyosoma productum and Corella inflata (Ascidiacea) was studied in normal and deganglionated animals. Chelyosoma productum lived for over a year after deganglionation and the ganglion did not re- generate. Electrophysiological recordings were made from semi-intact preparations. Responses to stimulation and spon- taneous activity continued to be transmitted through the body wall and branchial sac after deganglionation. Spread was slow, decremental, and facilitative. Treatment with >10 µg·mL–1 d-tubocurarine abolished all responses, indicating that nerves mediate conduction of excitation after deganglionation. Histological study using cholinesterase histochemistry and immunolabelling with antisera against tubulin and gonadotropin-releasing hormone showed no evidence of a peri- pheral nerve net in regions showing conduction, contrary to previous claims. The cell bodies of the motor neurones were found to lie entirely within the ganglion or its major roots. Their terminal branches intermingled to form netlike arrays. Sensory neurons were identified with cell bodies in the periphery, in both the body wall and the branchial sac. Their processes also intermingled in netlike arrays before entering nerves going to the ganglion. It is concluded that the “residual” innervation that survives deganglionation is composed of either interconnected motor nerve terminals, interconnected sensory neurites, or some combination of the two. In re-inventing the nerve net, ascidians show conver- gent evolution with sea anemones, possibly as an adaptation to a sessile existence. Résumé : Le comportement de Chelyosoma productum et de Corella inflata (Ascidiacea) a été étudié chez des ani- maux normaux et des animaux qui ont subi l’ablation de leur ganglion.
    [Show full text]