Mepraia Spinolai in the Southeastern Pacific Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Mepraia Spinolai in the Southeastern Pacific Ocean Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 95(2): 167-170, Mar./Apr. 2000 167 Mepraia spinolai in the Southeastern Pacific Ocean Coast (Chile) - First Insular Record and Feeding Pattern on the Pan de Azúcar Island Hernán Sagua Franco+, Jorge Araya Rojas, Jorge González Cortes, Iván Neira Cortes Unidad de Parasitología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile In a field collection performed at Pan de Azúcar Island in Northern Chile, 95 specimens represent- ing all instars of Mepraia spinolai were collected. The intestinal contents of 55 specimens were exam- ined for Trypanosoma cruzi infection and were found to be negative. This is the first record of an insular habitat for M. spinolai, where the insects had fed mainly on seabirds (78%), some on marine mammals (5%), and some on reptiles (7%). Key words: Mepraia spinolai - insular habitat - blood meal - Chile In Chile there are only two representative spe- MATERIALS AND METHODS cies of Triatominae: the domiciliary Triatoma Pan de Azúcar island (Lat. 26' 08' S, Long. 70' infestans (Klug 1834) and the sylvatic Mepraia 40' W) is located 800 m from its neighboring coast. spinolai (Porter 1934) which is known only in It is 182 m high and 5 km distant from the outlet Chile. In this country both species have been found stream of the same name (Pan de Azúcar), which to be naturally infected with Trypanosoma cruzi, marks the limit between the regions of Antofagasta (Miles 1976, Schenone et al.1980, Schofield et al. and Atacama. In general the mainland coast of 1982, Apt & Reyes 1986, Sagua 1988, Schenone this area is stony and not very high, but is backed & Rojas 1989, Lent et al. 1994). by a range of mountains, which can reach 595 m M. spinolai is the only specie of Triatominae in height. The marine climate shows only slight with wing polymorphism. It is an aggressive in- temperature changes during the day, cloudiness that sect which will feed on any host, even during day- disperses at midday, high humidity, strong sunshine light (Gajardo-Tobar 1953, Lent & Wygodzinsky from the east, marine winds mainly from the west, 1979, Sagua 1983, Frías et al. 1987, Canals et al. and a saline atmosphere and soil. The Pan de 1998). It is almost entirely sylvatic, and only oc- Azúcar island flora and fauna are similar to those casionally reported at homes or in peridomestic of the littoral plain of the continental area of the habitats (Schenone et al. 1980, Schofield et al. Atacama Desert. Cacti and bushes, marine birds, 1982, 1998, Aguilera et al. 1986). carrion birds, lizards and the marine mammals This study records details of fieldwork per- Lutra felina (sea otter) and Otaria flavescens (sea formed at Pan de Azúcar Island, located in Chil- lions) are predominant on the island. ean Administrative Región III. The island is a sea- Currently this area is a natural park reserva- birds and marine mammals national park reserva- tion, since Spheniscus humboldti, (Humboldt pen- tion where M. spinolai was collected in all instars guin) and L. felina (marine otter) have their repro- of its life cycle. ductive habitats in this island. Field and laboratory procedures - Triatomines were collected during the summer of 1995 by manual sampling, using blunt forceps. The insect presence was investigated under stones and in bird nests and involved the collection of active walk- ing bugs. Some bugs were also captured as they This work was supported from DGI-Universidad de approached the researchers (nymphs II and III). Antofagasta, Chile. Bugs were maintained in flasks with corrugated +Corresponding author. Fax: (005655) 247786. E-mail: filter paper as a resting site. Labelled flasks were [email protected] sealed and transported to our laboratory. Received 3 May 1999 In the laboratory, live and dead triatomines were Accepted 4 January 2000 counted and instars were noted. The live bugs were 168 M. spinolai in the Pacific Ocean Coast (Chile) Hernán Sagua Franco et al. examined for anterior and posterior parasites as TABLE I described by D’Alessandro (1972). Dissections Total Mepraia spinolai caught at Pan de Azúcar were carried out in physiological saline with the island (Chile) intestines and genitalia being removed from the Instars I II III IV V Adults Total bugs (one per slide). Genitalia were preserved for histological studies. Samples of the stomach Alive 1 6 12 11 14 11 55 contents (promesenteron) were placed in a poly- Dead 4 4 10 9 5 8 40 styrene microtitration plate containing drops of Total 5 10 22 20 19 19 95 fresh saline in order to perform the bloodmeal analysis by double diffusion assay as described by Wisnivesky-Colli et al. (1980). Polyclonal an- tisera were obtained by injecting rabbits with three stage nymph were more commonly seen in the sum- doses of 50 µg of total proteins from marine mam- mer (December and January). mal (O. flavescens), rodent (Mus musculus) and To our knowledge, this is the first report of a man; sea birds (including a pool of seroproteins field collection of M. spinolai in an insular marine from Larus dominicanus, L. modestus, S. humboldti habitat. M. spinolai is unique to Chile where its and Pelecannus occidentalis), carrion birds geographical distribution and ecological range has (Cathartes aura) and reptiles (Tachymenis been previuosly studied only in mainland popula- peruvianus). tions (Schenone et al. 1980, Schofield et al. 1982, 1998, Sagua 1983). RESULTS AND DISCUSSION The main sylvatic ecotopes of this species along In order to characterize the M. spinolai main- the Pacific Ocean coast are bird nests (especially land habitat in the northern Chilean coast, we car- of marine birds), stony areas colonized by lizards, ried out several field studies in wild sectors be- and locations near to the resting places of sea ginning in 1985. We concentrated our activities wolves (O. flavescens) (Lent & Wygodzinsky on those areas used by big herds of sea lions for 1979, Schofield et al. 1998). reproduction and resting activities, thereby gener- Blood meal analysis was studied by double ating in their surroundings a trophic community diffusion and showed that these bugs preferentially constituted by other marine mammals, sea birds, fed on sea birds (78 %), marine mammals (14 %) birds of prey, and lizards. Within these same areas and lizards (7 %) (Table II). This appears to be the we have also found colonies of M. spinolai and first record of triatomine feeding on marine mam- ticks such as Argas neghmei. mals, however it has been previously reported that The results of these observations have allowed T. dimidiata and Rhodnius prolixus feed on cold- us to describe this new insular habitat for M. blooded hosts (amphibians and reptiles) as a mi- spinolai on Pan de Azúcar Island. This habitat is nor food source (5-10 %), in sylvatic areas of Cen- a protected natural park reservation where S. tral and South America (Zeledón et al. 1970, Pifano humboldti (Humboldt penguin) nests during its 1973). In Chile, Aguilera et al. (1986) reported annual migration, along with other species of sea bloodmeals from reptiles in six M. spinolai col- birds such as seagulls (L. dominicanus and L. lected from the Chilean Administrative Region IV modestus) and pelicans (P. occidentalis). Marine (Coquimbo). otters (L. felina) and sea lions (O. flavescens) are also present and it is common to observe different species of lizards that feed on the cliff’s flora and marine fauna. TABLE II In our collections, we found that all stages Mepraia spinolai in Pan de Azúcar island (Chile). of M. spinolai nymphs, which are normally black, Blood meal analysis by double diffusion test used camouflage with sand grains. This camou- Antisera Reactive Non reactive flage obstructed our bug collection work. A simi- lar phenomen was previously observed for Tri- No. % atoma dimidiata (Zeledón et al. 1969), a vector of Otaria flavescens 81547 Chagas disease in Central America. Mus musculus -55 Table I shows the total number of bugs cap- Man (OIV-Rh+) - 55 tured during a three day period. The prominence Sea birdsa 43 78 12 of young instars is notable. Mortality of young Cathartes aura -55 instars is probably high due to the difficulty in Tachymenis peruvianus 47 51 obtaining blood meals in this extremely isolated a: pool including Larus dominicanus, L. modestus, location. Fishermen confirmed that adults and V Spheniscus humboldti and Pelecannus occidentalis. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 95(2), Mar./Apr. 2000 169 M. spinolai has the capacity to live in both Tapia C, Cattan P 1998. Biología comparada de peridomestic and sylvatic habitats but its feed- Mepraia spinolai en condiciones de laboratorio y ing patterns and infection rates with T. cruzi, could de terreno: cinco años de estudio. Parasitol al Día vary within the different ecologic environments. 22: 72-78. In Chile two geographically separate and ecologi- D’Alessandro A 1972. New experimental vectors of Colombian Trypanosoma rangeli. J Med Entomol cally very different areas have been described: (a) 9: 187-195. the Pacific Ocean litoral areas of Adminstrative Frías D, Martínez H, Wallace A 1987. Some taxonomic Regions I, II and III, where currently all M. spinolai features of Triatoma spinolai Porter (Hemiptera: have been collected from sylvatic environments Triatominae). Acta Entomol Chil 14: 155-170. not influenced by the human presence. These in- Gajardo-Tobar R 1953. Algo más sobre Mepraia spinolai sects are always non infected by T. cruzi (Schofield Porter (Hemiptera- Triatominae). Rev Chil Entomol et al. 1998); (b) the Intermedia and Andean areas 3: 117-125. of Administrative Regions III, IV, V and González J, Araya J, Sagua H, Cornejo J, Vargas L 1987. Metropolitana Region, where M.
Recommended publications
  • Mepraia Spinolai (Porter) and Mepraia Gajardoi Frías Et Al (Hemiptera: Reduviidae: Triatominae) in Chile and Its Parapatric Model of Speciation
    572 July - August 2010 SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY A New Species and Karyotype Variation in the Bordering Distribution of Mepraia spinolai (Porter) and Mepraia gajardoi Frías et al (Hemiptera: Reduviidae: Triatominae) in Chile and its Parapatric Model of Speciation DANIEL FRÍAS-LASSERRE Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, 7760197, Santiago, Chile; [email protected] Edited by Marcelo Duarte – MZ/USP Neotropical Entomology 39(4):572-583 (2010) ABSTRACT - In the present study, the morphology, color pattern, chromosomal complement and aspects of meiosis in natural populations at the borders of the distributions of Mepraia gajardoi Frías et al and Mepraia spinolai (Porter) are described. The males of these bordering populations are brachypterous or macropterous, while females are always micropterous. Morphological and cytogenetic data indicated that the populations that border the distributions of M. gajardoi and M. spinolai, belong to a different species of parapatric origin. KEY WORDS: Wing polymorphism, heterochromatin variation, vector of Chagas’ disease Mepraia spinolai (Porter) and Mepraia gajardoi Frías et gajardoi. It is formed by sex chromosomes surrounded by al are two endemic Chilean Reduviidae. Mepraia gajardoi, several autosomal heteropycnotic dots. Other heteropycnotic originally considered as a population of M. spinolai, later regions outside this chromocenter can also be observed (Frías came to be regarded as a distinct species (Frías et al 1998, & Atria 1998, Perez et al 2004) Jurberg et al 2002). It is distributed along the northern coast In the present study, I report the morphological traits of of Chile, approximately between 18º and 26º S, while M. adults and the chromosomal complement of populations of spinolai is distributed approximately between 26º S and 33º Mepraia species bordering the distribution of M.
    [Show full text]
  • What Does Determine Gonad Weight in the Wild Kissing Bug Mepraia Spinolai? Carezza Botto-Mahan+, Rodrigo Medel
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 102(2): 233-235, March 2007 233 What does determine gonad weight in the wild kissing bug Mepraia spinolai? Carezza Botto-Mahan+, Rodrigo Medel Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile Female fecundity increases with body size in a variety of insects, but it is unknown if this generalization applies for kissing bugs. In this study, we evaluate whether gonad weight in the bloodsucking insect Mepraia spinolai correlates with body size, or determined by nutrition or developmental time. We found that the invest- ment on reproductive tissue correlates positively and significantly with body size and with the amount of in- gested blood by female insects along their lifespan. Total molting time did not significantly affect gonad weight. We suggest that under optimal feeding conditions M. spinolai females could express their maximum reproduc- tive potential. Key words: Triatominae - Reduviidae - reproductive investment Female fecundity has been shown to increase with Wygodzinsky 1979). M. spinolai requires blood of ver- body size in a variety of insects. Size and fecundity are tebrates to complete its life cycle (Sagua et al. 2000, influenced by genetic factors, development, and envi- Canals et al. 2001). The development of this hemime- ronmental conditions, however, under constant environ- tabolous insect includes an egg, five instar nymphs, and mental conditions fecundity is positively correlated with the adult. Often one full engorgement is sufficient for female size (Honek 1993). Egg production increases with molting from one instar nymph to the next (Kollien & body size and this increase is often expected simply be- Schaub 2000).
    [Show full text]
  • A New Species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae)
    A peer-reviewed open-access journal ZooKeys 675: 1–25A new (2017) species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae) 1 doi: 10.3897/zookeys.675.12024 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae) João Aristeu da Rosa1, Hernany Henrique Garcia Justino2, Juliana Damieli Nascimento3, Vagner José Mendonça4, Claudia Solano Rocha1, Danila Blanco de Carvalho1, Rossana Falcone1, Maria Tercília Vilela de Azeredo-Oliveira5, Kaio Cesar Chaboli Alevi5, Jader de Oliveira1 1 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Araraquara, SP, Brasil 2 Departamento de Vigilância em Saúde, Prefeitura Municipal de Paulínia, SP, Brasil 3 Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil 4 Departa- mento de Parasitologia e Imunologia, Universidade Federal do Piauí (UFPI), Teresina, PI, Brasil 5 Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), São José do Rio Preto, SP, Brasil Corresponding author: João Aristeu da Rosa ([email protected]) Academic editor: G. Zhang | Received 31 January 2017 | Accepted 30 March 2017 | Published 18 May 2017 http://zoobank.org/73FB6D53-47AC-4FF7-A345-3C19BFF86868 Citation: Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, Carvalho DB, Falcone R, Azeredo- Oliveira MTV, Alevi KCC, Oliveira J (2017) A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 1–25. https://doi.org/10.3897/zookeys.675.12024 Abstract A colony was formed from eggs of a Rhodnius sp. female collected in Taquarussu, Mato Grosso do Sul, Brazil, and its specimens were used to describe R.
    [Show full text]
  • Vectors of Chagas Disease, and Implications for Human Health1
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Jurberg Jose, Galvao Cleber Artikel/Article: Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health 1095-1116 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health1 J. JURBERG & C. GALVÃO Abstract: The members of the subfamily Triatominae (Heteroptera, Reduviidae) are vectors of Try- panosoma cruzi (CHAGAS 1909), the causative agent of Chagas disease or American trypanosomiasis. As important vectors, triatomine bugs have attracted ongoing attention, and, thus, various aspects of their systematics, biology, ecology, biogeography, and evolution have been studied for decades. In the present paper the authors summarize the current knowledge on the biology, ecology, and systematics of these vectors and discuss the implications for human health. Key words: Chagas disease, Hemiptera, Triatominae, Trypanosoma cruzi, vectors. Historical background (DARWIN 1871; LENT & WYGODZINSKY 1979). The first triatomine bug species was de- scribed scientifically by Carl DE GEER American trypanosomiasis or Chagas (1773), (Fig. 1), but according to LENT & disease was discovered in 1909 under curi- WYGODZINSKY (1979), the first report on as- ous circumstances. In 1907, the Brazilian pects and habits dated back to 1590, by physician Carlos Ribeiro Justiniano das Reginaldo de Lizárraga. While travelling to Chagas (1879-1934) was sent by Oswaldo inspect convents in Peru and Chile, this Cruz to Lassance, a small village in the state priest noticed the presence of large of Minas Gerais, Brazil, to conduct an anti- hematophagous insects that attacked at malaria campaign in the region where a rail- night.
    [Show full text]
  • Comparative Population Dynamics of the Bug Mepraia Spinolai, a Sylvatic
    Medical and Veterinary Entomology (2009) 23, 106–110 Comparative population dynamics of the bug Mepraia spinolai , a sylvatic vector of Chagas ’ disease, in different hosts M. ACUÑA-RETAMAR 1,2 , C. BOTTO-MAHAN 3 , M. CANALS 3 , J. P. CORREA 1 and P. E . C AT TA N 1 1 Departamento de Ciencias Biologicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile , 2 Department of Pathology, University of New Mexico, Albuquerque, New Mexico, U.S.A . and 3 Departamento de Ecologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile Abstract . The aim of this work was to determine the impact of specific hosts on a population of Mepraia spinolai (Porter) (Hemiptera, Reduviidae), a sylvatic vector of Chagas’ disease in Chile. We assessed whether a recently introduced host could be an important epidemiological factor in maintaining Chagas ’ disease in Chile. The study stressed the variations in survival, individual weight and fecundity in the insect population when the vector was raised with a species-specific food supply. The study compared the European rabbit Oryctolagus cuniculus , introduced in Chile ≤ 150 years ago, with a wild endemic rodent, Octodon degus . Hosts were placed separately in experimental glass chambers. Groups of insects maintained with rabbits had greater fecundity than those raised with rodents, but both groups had similar survival times and average weights. Both O. degu s and the European rabbit appear to be suitable hosts for M. spinolai , but the rabbit is better than the rodent. Additional research is needed to determine which factors of O. cuniculus produce the observed results.
    [Show full text]
  • A Simple Immunometric Assay to Assess the Feeding Habits of Meprai Spinolai, a Trypanosoma Cruzi Vector
    Parasitol Res (2004) 92: 375–379 DOI 10.1007/s00436-003-1011-6 ORIGINAL PAPER Marı´a C. Molina Æ Pedro Catta´n Æ Mauricio Canals Loreto Cruzat Æ Juan C. Aguillo´n Æ Arturo Ferreira A simple immunometric assay to assess the feeding habits of Meprai spinolai,aTrypanosoma cruzi vector Received: 10 September 2003 / Accepted: 12 September 2003 / Published online: 27 January 2004 Ó Springer-Verlag 2004 Abstract We propose a simple assay to assess the by metacyclic trypomastigotes present in the faeces of importance of seven vertebrate species as food sources Triatominae, hematophagous arthropod insect vectors for Mepria spinolai, a wild arthropod vector of Try- (Hemiptera: Reduviidae). Upon invading host cells, the panosoma cruzi (the agent of Chagas’ disease). Rabbits parasites differentiate into intracellular amastigotes were immunized with serum proteins from one of each (Brener 1973; Salvatella 1986; Schenone et al. 1991; of the seven species. After titration, a consensus 1/ Brener and Gazzinelli 1997; De Souza 2002). From the 100,000 dilution of the immune sera detected vertebrate 60 Triatominae species reported as potential vectors of serum proteins in the intestinal contents of 48.9% of 131 T. cruzi, two are present in Chile: Triatoma infestans, insects tested. The high proportion of negative samples Klug, the intradomicilliary vector, and Mepraia spinolai, is consistent with previous information indicating that Porter, the wild vector, increasingly found in peridomi- these insects can withstand prolonged fasting periods. ciliary or domiciliary environments (Lent and Wygod- Alternatively, they may have fed on a different animal zinsky 1979; Apt and Reyes 1986; Lent et al.
    [Show full text]
  • Texto Completo (Pdf)
    Cien. Inv. Agr. 46(1):40-49. 2019 www.rcia.uc.cl PLANT ENTOMOLOGY DOI 10.7764/rcia.v46i1.1907 RESEARCH NOTE Arthropods of forestry and medical-veterinary importance in the Limarí basin (Coquimbo region, Chile) Jaime Pizarro-Araya1,2,3, Fermín M. Alfaro1,2,3, Rodrigo A. Muñoz-Rivera4,5, Juan E. Barriga-Tuñón6, and Luis Letelier7,8 1Universidad de La Serena, Facultad de Ciencias, Departamento de Biología, Laboratorio de Entomología Ecológica. Casilla 554, La Serena, Chile. 2Universidad de La Serena, Instituto de Investigación Multidisciplinar en Ciencia y Tecnología. Casilla 554, La Serena, Chile. 3Grupo de Artrópodos, Sistema Integrado de Monitoreo y Evaluación de Ecosistemas Forestales Nativos (SIMEF), Chile. 4Universidad de La Serena, Facultad de Ciencias, Departamento de Agronomía, Laboratorio de Prospección, Monitoreo y Modelación de Recursos Agrícolas y Ambientales (PROMMRA). Ovalle, Chile. 5Departamento de Investigación y Desarrollo, AnRos Asesorías Agronómicas SpA. Gordon Steel 3849 Costa Palermo 2, Coquimbo, Chile. 6Universidad Católica del Maule, Facultad de Ciencias, Agrarias y Forestales, Departamento de Ciencias Agrarias. Casilla 139, Curicó, Chile. 7Universidad Bernardo O’Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS). Casilla 913322, Santiago, Chile. 8Universidad de Talca, Instituto de Ciencias Biológicas y Núcleo Científico Multidisciplinario. 1 Poniente 1141, Casilla 747-721, Talca, Chile. Abstract J. Pizarro-Araya, F.M. Alfaro, R.A. Muñoz-Rivera, J.E. Barriga-Tuñon, and L. Letelier. 2019. Arthopods of forestry and medical-veterinary importance in the Limarí basin (Coquimbo region, Chile). Cien. Inv. Agr. 46(1): 40-49. The Limarí River valley, located in the Coquimbo Region of Chile, is an important area for agricultural production that pertains to the transverse valleys ecoregion, known as Norte Chico.
    [Show full text]
  • Alteration of the Social and Spatial Organization of the Vector of Chagas Disease, Triatoma Infestans, by the Parasite Trypanoso
    bioRxiv preprint doi: https://doi.org/10.1101/383620; this version posted December 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Alteration of the social and spatial organization of the vector of Chagas disease, Triatoma 2 infestans, by the parasite Trypanosoma cruzi 3 4 5 6 7 Stéphanie Depickère1,#a,#b,*, Gonzalo Marcelo Ramírez-Ávila2, Jean-Louis Deneubourg3 8 9 1 Laboratorio Entomología Médica, INLASA, La Paz, Bolivia 10 2 Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 11 3 CENOLI, Université Libre de Bruxelles, 1050 Brussels, Belgium 12 #a Current address: Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, 13 Bolivia 14 #b Current address: The Abdus Salam, International Centre for Theoretical Physics (ICTP), Trieste, 15 Italy 16 17 18 19 20 21 22 23 24 Corresponding author: Stéphanie Depickère E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/383620; this version posted December 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 27 Insects of Triatominae subfamily are vectors of the parasite Trypanosoma cruzi, the etiological agent 28 of Chagas disease affecting millions of people in Latin America.
    [Show full text]
  • Eco-Epidemiology of Chagas Disease in Chile
    DOI: 10.5772/intechopen.74744 ProvisionalChapter chapter 6 Eco-Epidemiology of Chagas Disease in Chile Mauricio CanalsMauricio Canals LambarriLambarri,, Andrea CanalsAndrea Canals CifuentesCifuentes,, Salvador Ayala,Salvador Ayala, Valentina Tapia-GarayValentina Tapia-Garay andand Dante CáceresDante Cáceres Lillo Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74744 Abstract There are four vector species of Chagas disease in Chile: Triatoma infestans, responsible for the domestic cycle; Mepraia spinolai, the main wild vector; and M. gajardoi and M. para- patrica, two coastal wild species whose importance as vectors is not well known. They are species of dry environments of the central-north region of Chile, whose best predictors of distribution are warm average temperatures and low rainfall. They are found in rock quarries, nests of birds, and small mammals, and T. infestans has sylvatic foci associated with a Bromeliaceae species. While human blood represents 70% of the diet of T. infestans, in M. spinolai this value is 7%, which means that a large part of Chagas disease in Chile is due to T. infestans. However, all species have high percentages of T. cruzi infection. Chagas disease in Chile follows the distribution of T. infestans, and although the cycle of domestic transmission by this vector is interrupted, there is still a constant prevalence and mortality and ascending incidences. Models predict that although climate change will not vary greatly the north-south distribution of vectors, it could increase the repro- ductive number of the disease, increasing risk areas of Chagas disease. Keywords: Chagas disease, ecology, vectors, epidemiology, Chile 1.
    [Show full text]
  • What Does Determine Gonad Weight in the Wild Kissing Bug Mepraia Spinolai? Carezza Botto-Mahan+, Rodrigo Medel
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 102(2): 233-235, March 2007 233 What does determine gonad weight in the wild kissing bug Mepraia spinolai? Carezza Botto-Mahan+, Rodrigo Medel Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile Female fecundity increases with body size in a variety of insects, but it is unknown if this generalization applies for kissing bugs. In this study, we evaluate whether gonad weight in the bloodsucking insect Mepraia spinolai correlates with body size, or determined by nutrition or developmental time. We found that the invest- ment on reproductive tissue correlates positively and significantly with body size and with the amount of in- gested blood by female insects along their lifespan. Total molting time did not significantly affect gonad weight. We suggest that under optimal feeding conditions M. spinolai females could express their maximum reproduc- tive potential. Key words: Triatominae - Reduviidae - reproductive investment Female fecundity has been shown to increase with Wygodzinsky 1979). M. spinolai requires blood of ver- body size in a variety of insects. Size and fecundity are tebrates to complete its life cycle (Sagua et al. 2000, influenced by genetic factors, development, and envi- Canals et al. 2001). The development of this hemime- ronmental conditions, however, under constant environ- tabolous insect includes an egg, five instar nymphs, and mental conditions fecundity is positively correlated with the adult. Often one full engorgement is sufficient for female size (Honek 1993). Egg production increases with molting from one instar nymph to the next (Kollien & body size and this increase is often expected simply be- Schaub 2000).
    [Show full text]
  • DNA Evidence of Trypanosoma Cruzi in the Chilean Wild Vector Mepraia
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 100(3): 237-239, May 2005 237 SHORT COMMUNICATION DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae) Carezza Botto-Mahan/+, Sylvia Ortiz*, Marlene Rozas*, Pedro E Cattan**, Aldo Solari* Departamento de Ciencias Ecológicas, Facultad de Ciencias *Programa de Biología Celular y Molecular, Facultad de Medicina **Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias Universidad de Chile, Santiago, Chile Molecular evidence showed 46.2% of Trypanosoma cruzi infection in Mepraia spinolai insects from North-Cen- tral Chile, which is significantly higher than previous reports of up to 26% by microscopic observation. Our results show similar infection levels among nymphal stages, ranging from 38.3 to 54.1%, indicating that younger nymphs could be as important as older ones in parasite transmission. A cautionary note must be stressed to indicate the potential role of M. spinolai in transmitting T. cruzi in country areas due to the high infection level detected by molecular analysis. Key words: Triatominae - Chagas disease - Kissingbug Chagas disease is a serious human parasitic disease cruzi infection levels of wild insect populations, ranging in America that is caused by the flagellate protozoan Try- 0-26%, depending on the locality (Apt & Reyes 1986, Frias panosoma cruzi, and transmitted by blood-sucking in- et al. 1995, Ordenes et al. 1996, Canals et al. 2001). In this sects of the subfamily Triatominae (Hemiptera: Reduvi- paper we document the level of T. cruzi infection in a wild idae) (Panzera et al. 2004). Detection of T. cruzi can be population of M.
    [Show full text]
  • Potential Impact of Climate Change on The
    Garrido et al. Parasites Vectors (2019) 12:478 https://doi.org/10.1186/s13071-019-3744-9 Parasites & Vectors RESEARCH Open Access Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi Rubén Garrido1,2†, Antonella Bacigalupo3†, Francisco Peña‑Gómez1, Ramiro O. Bustamante1, Pedro E. Cattan3, David E. Gorla4 and Carezza Botto‑Mahan1* Abstract Background: Mepraia gajardoi and Mepraia spinolai are endemic triatomine vector species of Trypanosoma cruzi, a parasite that causes Chagas disease. These vectors inhabit arid, semiarid and Mediterranean areas of Chile. Mepraia gajardoi occurs from 18° to 25°S, and M. spinolai from 26° to 34°S. Even though both species are involved in T. cruzi transmission in the Pacifc side of the Southern Cone of South America, no study has modelled their distributions at a regional scale. Therefore, the aim of this study is to estimate the potential geographical distribution of M. spinolai and M. gajardoi under current and future climate scenarios. Methods: We used the Maxent algorithm to model the ecological niche of M. spinolai and M. gajardoi, estimating their potential distributions from current climate information and projecting their distributions to future climatic conditions under representative concentration pathways (RCP) 2.6, 4.5, 6.0 and 8.5 scenarios. Future predictions of suitability were constructed considering both higher and lower public health risk situations. Results: The current potential distributions of both species were broader than their known ranges. For both species, climate change projections for 2070 in RCP 2.6, 4.5, 6.0 and 8.5 scenarios showed diferent results depending on the methodology used.
    [Show full text]