Chapter VII. Rotating Coordinate Systems

Total Page:16

File Type:pdf, Size:1020Kb

Chapter VII. Rotating Coordinate Systems Chapter VII. Rotating Coordinate Systems 7.1. Frames of References In order to really look at particle dynamics in the context of the atmosphere, we must now deal with the fact that we live and observe the weather in a non-inertial reference frame. Specially, we will look at a rotating coordinate system and introduce the Coriolis and centrifugal force. Rotating and Non-rotating Frames of Reference First, start by recognizing that presence of 2 coordinate systems when dealing with problems related to the earth: a) one fixed to the earth that rotates and is thus accelerating (non-inertial), our real life frame of reference b) one fixed with respect to the remote "star", i.e., an inertial frame where the Newton's laws are valid. Apparent Force In order to apply Newton's laws in our earth reference frame, we must take into account the acceleration of our coordinate system (earth). This leads to the apparent forces that get added to Newton's 2nd law of motion: dVr Fr = real (inertial) (7.1) dtm r dVr Fr F =+real apparent (non-inertial) (7.2) dtmm Fr where apparent are due solely to the fact that we operate / observe in a non-inertial m reference frame. rr dAdA We need to relate to . dtdt inertialnon-inertial 7-1 7.2. Time Derivatives in Fixed and Rotating Coordinates Reading Section 7.1 of Symon. Using concepts developed in the last chapter, let's introduce some notion that will prove to be useful. r W z y Vr r T R r Latitude circle a =colatitude f = latitude x Equatorial Plane Let r = position vector from the origin (center of the earth). Then, we can find out that the instantaneous tangential velocity of a particle at any distance r ( azr + r where a = mean radius of earth and z = altitude above ground) is given by rrr VrT =W´ . (7.1) r Here W is the vector angular velocity of the earth rotation. r We can see this by first looking at the magnitude of VT . According to the above figure, rrrrrr |VT |=|W|R=|W||rr|sina =||W´ (7.2) 7-2 r dA Now, let's try to relate in 2 reference frames: dt a) Fixed (absolute) system (iˆˆ,,)jkˆ r b) Rotating ( W ) system (iˆˆ',jk',ˆ') z z' y' r W y x x' r Now, a vector A is the same vector no matter what coordinate system it is viewed from. This r ˆˆˆˆˆˆ A=Axi++AyjAzxk=A'i'++A'yzj'Ak''. r Given that the primed system is rotating, however, the time derivative of A will be different if viewed from the 2 systems. Mathematically, we have 'a' for absolute r dAdA dA dA ax=iˆˆ++y jkz ˆ dtdtdtdt dA' dA' dA' =x iˆˆ'''++y jkz ˆ (7.3) dtdtdt diˆˆ'dj''dkˆ +++AAA''' xdtyzdtdt Note that the primed unit vectors vary with time! (Remember our earlier derivation of the velocity in plane polar coordinates?) 7-3 iˆ'()tt+D Diˆ' due to rotation of unit vector itˆ'() rrr r Recall earlier that VrT =W´ for a particle rotating at angular velocity W . Since drr Vr = therefore T dt drr r = W´r (7.4) dt The above is correct only for a vector whose length does not change. The same is true for the unit vectors, therefore diˆ' =W´r iˆ' dt djˆ' =W´r ˆj ' (7.5) dt dkˆ' r =W´kˆ' dt r dA If we now loot at in the reference frame of the rotating (primed) system, then dt iˆˆ',jk' and ˆ' appear to be fixed! r dAdA' dA' dA' rz=x iˆˆ'''++y jkˆ (7.6) dtdtdtdt r which is a time rate of change in A seen from the rotating reference frame and is r dA analogous to a earlier. dt Thus, from (7.3), we can write 7-4 r r dA dA a = r +A'(Wr´iˆˆ')+A'(Wrr´j')+Ak'(W´ ˆ') dt dt xyy rr dAdA r = rr+Wrr´(A'iˆˆ'+A'j'+A'kAˆ') =+W´ à dtxyydt r r dA dA r a = =r +W´r A (7.7) dt dt r Let's look at a physical interpretation. If Ar= r , then we can write drr drr a =r +W´r r (7.8) dt dt Absolute Velocity relative Velocity of the velocity in to moving coordinate the inertial (rotating) system itself frame V coordinates ()V (remember a r rr Vr=W´r ) rrr In another word, Vabs=+VVrelcoord . Think of the earlier example of throwing a baseball towards a person on the ground from a moving railway car. If you can remember this simple analogy, you will be able to remember the formula in the box. 7-5 7.3 Equation of Motion in Absolute and Rotating Coordinates Let's now apply concepts from the previous section to any arbitrary velocity vector of a particle assuming that the origins of the rotating and fixed (inertial) frames are the same. In this case, the position vector to any location is the same in both systems. Our goal is to find the equations of motion in the absolute and rotating coordinates. Now, we just showed that rrrr Va =Vr+W´ (7.9) r where V is the relative velocity (we shall drop subscript r from now on). r Apply Eq.(7.7) to Va in (7.9) à dVr d a =éVr+Wr´rrrù+Wr´éùVrrr+W´ dtdt ëûëû dVdr =+éWr´rrrù+Wrr´Vr+Wrr´éùW´ dtdt ëûëû (7.10) dVrrdW drr =+´rrr+Wr´+Wrr´Vr+Wrr´éùW´ dtdtdt ëû dVr =+2Wrr´Vr+Wrr´éùW´r dt ëû Apply the Newton's second law à r r r Fi dV dV å ai=+2Wrr´Vr+Wrr´éùW´=r (7.11) dtdtmëû The part in the box is the equation of motion in the rotating coordinate system! It describes the change of (relative) velocity in time subjecting the net force. The forces on the right hand side are real forces, and the second and third term on the left arises because of the coordinate rotation, and there are apparent (not real) forces. We will discuss them in more details in the following. 7-6 We will look at the last term one the left with respect to an earth oriented coordinate system: r W z y r VT r 2 r R -W R r Latitude circle a =colatitude f = latitude x Equatorial Plane Note that |Rrr |=|r |cosf . Look at the last term in (7.11): rrr W´ëûéùW´r . rrrr 2 SHOW IT FOR YOUSELF that W´ëûéùW´rR=-W ! (7.12) (Hint – use the right hand rule to find out the direction of this vector, then use the definition of cross product to determine its magnitude) Using this we can rewrite equation (7.11) as r r r Fi dV dV å ai=+2Wr´VRrr-W=2 (7.13) dtdtm Abs. Accel Rel. Accel. Coriolis accel Centripetal accel Net real force This is a VERY IMPORTANT EQUATION. 7-7 How do we make use of this equation? Let's look at the forces on the right hand side of (7.13) in the real atmosphere. They are Gravity = gr (force per unit mass) 1 PGF (per unit mass) = -Ñp (you have seen this before and you will r derive this term in Dynamics I) Friction = …. (neglected for now) These are real forces (those seen and felt in an inertial / fixed reference frame), so let's put them into the equation: r dV rrr2 1 +2W´V-WR=-Ñgpr (7.14) dt r this is the acceleration that we see and measure in our earth coordinate system – not an inertial frame, but the next 2 terms take that into account. Rearranging (7.14) à Coriolis force Centrifugal force r dV 1 rrr2 =-Ñp+gr -2W´VR+W (7.15) dt r Relative Real forces Apparent forces due acceleration solely to the rotation of the coordinate system Equation (7.15) is "THE" EQUATION OF MOTION used in meteorology – it is the backbone of meteorology! 7-8 7.4 Forces in Equation of Motion We are now going to spend more time looking in details at each of these terms. 7.4.1. Gravity Let's look first at gravity. Recall that GMm grr = e ˆ (7.16) a where Me = mass of earth and a = mean radius of the earth. It turns out it is convenient to combine gRr and W2 r , the centrifugal force. Due to the presence of the centrifugal force that's directed away from the axis of rotation, the earth is actually elliptic, with the radius at the equator slightly larger than that at the poles. If one measures that force that's pulling a mass downward, it is the sum of true gravity (the one due to gravitational effect) and the centrifigual force, i.e., rr2 r gnet =gR+W . (7.17) r r Note that g points towards the center of the earth while gnet is slightly equatorward. r Since gnet is what we really measure at the surface of the earth, from now on we drop the subscript net, and assume gr includes both effects. gr points in the direction of plumbline and is perpendicular to a static water surface – the horizontal plane. Equation (7.15) becomes: r dV 1 rr =-Ñp+gVr -2W´ (7.17a) dt r r r here g is the gnet in (7.17). See figure below. 7-9 Read Symon Sections 7.2 and 7.3, Riegal Pages 144-153! 7.4.2.
Recommended publications
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • WUN2K for LECTURE 19 These Are Notes Summarizing the Main Concepts You Need to Understand and Be Able to Apply
    Duke University Department of Physics Physics 361 Spring Term 2020 WUN2K FOR LECTURE 19 These are notes summarizing the main concepts you need to understand and be able to apply. • Newton's Laws are valid only in inertial reference frames. However, it is often possible to treat motion in noninertial reference frames, i.e., accelerating ones. • For a frame with rectilinear acceleration A~ with respect to an inertial one, we can write the equation of motion as m~r¨ = F~ − mA~, where F~ is the force in the inertial frame, and −mA~ is the inertial force. The inertial force is a “fictitious” force: it's a quantity that one adds to the equation of motion to make it look as if Newton's second law is valid in a noninertial reference frame. • For a rotating frame: Euler's theorem says that the most general mo- tion of any body with respect to an origin is rotation about some axis through the origin. We define an axis directionu ^, a rate of rotation dθ about that axis ! = dt , and an instantaneous angular velocity ~! = !u^, with direction given by the right hand rule (fingers curl in the direction of rotation, thumb in the direction of ~!.) We'll generally use ~! to refer to the angular velocity of a body, and Ω~ to refer to the angular velocity of a noninertial, rotating reference frame. • We have for the velocity of a point at ~r on the rotating body, ~v = ~! ×~r. ~ dQ~ dQ~ ~ • Generally, for vectors Q, one can write dt = dt + ~! × Q, for S0 S0 S an inertial reference frame and S a rotating reference frame.
    [Show full text]
  • PHYSICS of ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3
    Chapter 2 PHYSICS OF ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3 1 Ohio University, Athens, Ohio, USA 2 NASA Johnson Space Center, Houston, Texas, USA 3 Centre National de la Recherche Scientifique, Toulouse, France This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented. Figure 2-01. Artist's concept of one of NASA early (1962) concepts for a manned space station with artificial gravity: a self- inflating 22-m-diameter rotating hexagon. Photo courtesy of NASA. 1 ARTIFICIAL GRAVITY: WHAT IS IT? 1.1 Definition Artificial gravity is defined in this book as the simulation of gravitational forces aboard a space vehicle in free fall (in orbit) or in transit to another planet. Throughout this book, the term artificial gravity is reserved for a spinning spacecraft or a centrifuge within the spacecraft such that a gravity-like force results. One should understand that artificial gravity is not gravity at all. Rather, it is an inertial force that is indistinguishable from normal gravity experience on Earth in terms of its action on any mass. A centrifugal force proportional to the mass that is being accelerated centripetally in a rotating device is experienced rather than a gravitational pull.
    [Show full text]
  • Centripetal Force Is Balanced by the Circular Motion of the Elctron Causing the Centrifugal Force
    STANDARD SC1 b. Construct an argument to support the claim that the proton (and not the neutron or electron) defines the element’s identity. c. Construct an explanation based on scientific evidence of the production of elements heavier than hydrogen by nuclear fusion. d. Construct an explanation that relates the relative abundance of isotopes of a particular element to the atomic mass of the element. First, we quickly review pre-requisite concepts One of the most curious observations with atoms is the fact that there are charged particles inside the atom and there is also constant spinning and Warm-up 1: List the name, charge, mass, and location of the three subatomic circling. How does atom remain stable under these conditions? Remember particles Opposite charges attract each other; Like charges repel each other. Your Particle Location Charge Mass in a.m.u. Task: Read the following information and consult with your teacher as STABILITY OF ATOMS needed, answer Warm-Up tasks 2 and 3 on Page 2. (3) Death spiral does not occur at all! This is because the centripetal force is balanced by the circular motion of the elctron causing the centrifugal force. The centrifugal force is the outward force from the center to the circumference of the circle. Electrons not only spin on their own axis, they are also in a constant circular motion around the nucleus. Despite this terrific movement, electrons are very stable. The stability of electrons mainly comes from the electrostatic forces of attraction between the nucleus and the electrons. The electrostatic forces are also known as Coulombic Forces of Attraction.
    [Show full text]
  • Measuring Inertial, Centrifugal, and Centripetal Forces and Motions The
    Measuring Inertial, Centrifugal, and Centripetal Forces and Motions Many people are quite confused about the true nature and dynamics of cen- trifugal and centripetal forces. Some believe that centrifugal force is a fictitious radial force that can’t be measured. Others claim it is a real force equal and opposite to measured centripetal force. It is sometimes thought to be a continu- ous positive acceleration like centripetal force. Crackpot theorists ignore all measurements and claim the centrifugal force comes out of the aether or spa- cetime continuum surrounding a spinning body. The true reality of centripetal and centrifugal forces can be easily determined by simply measuring them with accelerometers rather than by imagining metaphysical assumptions. The Momentum and Energy of the Cannon versus a Cannonball Cannon Ball vs Cannon Momentum and Energy Force = mass x acceleration ma = Momentum = mv m = 100 kg m = 1 kg v = p/m = 1 m/s v = p/m = 100 m/s p = mv 100 p = mv = 100 energy = mv2/2 = 50 J energy = mv2/2 = 5,000 J Force p = mv = p = mv p=100 Momentum p = 100 Energy mv2/2 = mv2 = mv2/2 Cannon ball has the same A Force always produces two momentum as the cannon equal momenta but it almost but has 100 times more never produces two equal kinetic energy. quantities of kinetic energy. In the following thought experiment with a cannon and golden cannon ball, their individual momentum is easy to calculate because they are always equal. However, the recoil energy from the force of the gunpowder is much greater for the ball than the cannon.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Classical Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 13
    Classical mechanics - Wikipedia, the free encyclopedia Page 1 of 13 Classical mechanics From Wikipedia, the free encyclopedia (Redirected from Newtonian mechanics) In physics, classical mechanics is one of the two major Classical mechanics sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the Newton's Second Law action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of History of classical mechanics · the oldest and largest subjects in science, engineering and Timeline of classical mechanics technology. Branches Classical mechanics describes the motion of macroscopic Statics · Dynamics / Kinetics · Kinematics · objects, from projectiles to parts of machinery, as well as Applied mechanics · Celestial mechanics · astronomical objects, such as spacecraft, planets, stars, and Continuum mechanics · galaxies. Besides this, many specializations within the Statistical mechanics subject deal with gases, liquids, solids, and other specific sub-topics. Classical mechanics provides extremely Formulations accurate results as long as the domain of study is restricted Newtonian mechanics (Vectorial to large objects and the speeds involved do not approach mechanics) the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to Analytical mechanics: introduce the other major sub-field of mechanics, quantum Lagrangian mechanics mechanics, which reconciles the macroscopic laws of Hamiltonian mechanics physics with the atomic nature of matter and handles the Fundamental concepts wave-particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, Space · Time · Velocity · Speed · Mass · classical mechanics is enhanced by special relativity.
    [Show full text]
  • The Spin, the Nutation and the Precession of the Earth's Axis Revisited
    The spin, the nutation and the precession of the Earth’s axis revisited The spin, the nutation and the precession of the Earth’s axis revisited: A (numerical) mechanics perspective W. H. M¨uller [email protected] Abstract Mechanical models describing the motion of the Earth’s axis, i.e., its spin, nutation and its precession, have been presented for more than 400 years. Newton himself treated the problem of the precession of the Earth, a.k.a. the precession of the equinoxes, in Liber III, Propositio XXXIX of his Principia [1]. He decomposes the duration of the full precession into a part due to the Sun and another part due to the Moon, to predict a total duration of 26,918 years. This agrees fairly well with the experimentally observed value. However, Newton does not really provide a concise rational derivation of his result. This task was left to Chandrasekhar in Chapter 26 of his annotations to Newton’s book [2] starting from Euler’s equations for the gyroscope and calculating the torques due to the Sun and to the Moon on a tilted spheroidal Earth. These differential equations can be solved approximately in an analytic fashion, yielding Newton’s result. However, they can also be treated numerically by using a Runge-Kutta approach allowing for a study of their general non-linear behavior. This paper will show how and explore the intricacies of the numerical solution. When solving the Euler equations for the aforementioned case numerically it shows that besides the precessional movement of the Earth’s axis there is also a nu- tation present.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Rotating Reference Frame Control of Switched Reluctance
    ROTATING REFERENCE FRAME CONTROL OF SWITCHED RELUCTANCE MACHINES A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Tausif Husain August, 2013 ROTATING REFERENCE FRAME CONTROL OF SWITCHED RELUCTANCE MACHINES Tausif Husain Thesis Approved: Accepted: _____________________________ _____________________________ Advisor Department Chair Dr. Yilmaz Sozer Dr. J. Alexis De Abreu Garcia _____________________________ _____________________________ Committee Member Dean of the College Dr. Malik E. Elbuluk Dr. George K. Haritos _____________________________ _____________________________ Committee Member Dean of the Graduate School Dr. Tom T. Hartley Dr. George R. Newkome _____________________________ Date ii ABSTRACT A method to control switched reluctance motors (SRM) in the dq rotating frame is proposed in this thesis. The torque per phase is represented as the product of a sinusoidal inductance related term and a sinusoidal current term in the SRM controller. The SRM controller works with variables similar to those of a synchronous machine (SM) controller in dq reference frame, which allows the torque to be shared smoothly among different phases. The proposed controller provides efficient operation over the entire speed range and eliminates the need for computationally intensive sequencing algorithms. The controller achieves low torque ripple at low speeds and can apply phase advancing using a mechanism similar to the flux weakening of SM to operate at high speeds. A method of adaptive flux weakening for ensured operation over a wide speed range is also proposed. This method is developed for use with dq control of SRM but can also work in other controllers where phase advancing is required.
    [Show full text]
  • Exploring Artificial Gravity 59
    Exploring Artificial gravity 59 Most science fiction stories require some form of artificial gravity to keep spaceship passengers operating in a normal earth-like environment. As it turns out, weightlessness is a very bad condition for astronauts to work in on long-term flights. It causes bones to lose about 1% of their mass every month. A 30 year old traveler to Mars will come back with the bones of a 60 year old! The only known way to create artificial gravity it to supply a force on an astronaut that produces the same acceleration as on the surface of earth: 9.8 meters/sec2 or 32 feet/sec2. This can be done with bungee chords, body restraints or by spinning the spacecraft fast enough to create enough centrifugal acceleration. Centrifugal acceleration is what you feel when your car ‘takes a curve’ and you are shoved sideways into the car door, or what you feel on a roller coaster as it travels a sharp curve in the tracks. Mathematically we can calculate centrifugal acceleration using the formula: V2 A = ------- R Gravitron ride at an amusement park where V is in meters/sec, R is the radius of the turn in meters, and A is the acceleration in meters/sec2. Let’s see how this works for some common situations! Problem 1 - The Gravitron is a popular amusement park ride. The radius of the wall from the center is 7 meters, and at its maximum speed, it rotates at 24 rotations per minute. What is the speed of rotation in meters/sec, and what is the acceleration that you feel? Problem 2 - On a journey to Mars, one design is to have a section of the spacecraft rotate to simulate gravity.
    [Show full text]
  • Principle of Relativity and Inertial Dragging
    ThePrincipleofRelativityandInertialDragging By ØyvindG.Grøn OsloUniversityCollege,Departmentofengineering,St.OlavsPl.4,0130Oslo, Norway Email: [email protected] Mach’s principle and the principle of relativity have been discussed by H. I. HartmanandC.Nissim-Sabatinthisjournal.Severalphenomenaweresaidtoviolate the principle of relativity as applied to rotating motion. These claims have recently been contested. However, in neither of these articles have the general relativistic phenomenonofinertialdraggingbeeninvoked,andnocalculationhavebeenoffered byeithersidetosubstantiatetheirclaims.HereIdiscussthepossiblevalidityofthe principleofrelativityforrotatingmotionwithinthecontextofthegeneraltheoryof relativity, and point out the significance of inertial dragging in this connection. Although my main points are of a qualitative nature, I also provide the necessary calculationstodemonstratehowthesepointscomeoutasconsequencesofthegeneral theoryofrelativity. 1 1.Introduction H. I. Hartman and C. Nissim-Sabat 1 have argued that “one cannot ascribe all pertinentobservationssolelytorelativemotionbetweenasystemandtheuniverse”. They consider an UR-scenario in which a bucket with water is atrest in a rotating universe,andaBR-scenariowherethebucketrotatesinanon-rotatinguniverseand givefiveexamplestoshowthatthesesituationsarenotphysicallyequivalent,i.e.that theprincipleofrelativityisnotvalidforrotationalmotion. When Einstein 2 presented the general theory of relativity he emphasized the importanceofthegeneralprincipleofrelativity.Inasectiontitled“TheNeedforan
    [Show full text]