ATP-Binding Cassette Transporter ABCA4 and Chemical Isomerization Protect Photoreceptor Cells from the Toxic Accumulation of Excess 11-Cis-Retinal

Total Page:16

File Type:pdf, Size:1020Kb

ATP-Binding Cassette Transporter ABCA4 and Chemical Isomerization Protect Photoreceptor Cells from the Toxic Accumulation of Excess 11-Cis-Retinal ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal Faraz Quazi and Robert S. Molday1 Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Edited by Jeremy Nathans, Johns Hopkins University, Baltimore, MD, and approved February 25, 2014 (received for review January 15, 2014) The visual cycle is a series of enzyme-catalyzed reactions which disk membranes to facilitate the removal of all-trans-retinal from converts all-trans-retinal to 11-cis-retinal for the regeneration of disk membranes of rod and cone photoreceptor cells following visual pigments in rod and cone photoreceptor cells. Although photoexcitation. Recent studies have confirmed that ABCA4 can essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic flip the all-trans isomer of N-retinylidene-PE and PE from the due to its highly reactive aldehyde group and has to be detoxified lumen to the cytoplasmic leaflet of membranes (6, 10). However, by either reduction to retinol or sequestration within retinal-binding the light-dependent accumulation of lipofuscin and A2E in Abca4 proteins. Previous studies have focused on the role of the ATP-bind- knockout mice has been recently challenged. Boyer et al. (11) have ing cassette transporter ABCA4 associated with Stargardt macular shown that the levels and rates of increase in lipofuscin, including degeneration and retinol dehydrogenases (RDH) in the clearance trans the lipofuscin fluorophore A2E, were similar in dark-reared and of all- -retinal from photoreceptors following photoexcitation. Abca4 How rod and cone cells prevent the accumulation of 11-cis-retinal in cyclic light-reared knockout mice. These results and ex- cis photoreceptor disk membranes in excess of what is required for vi- periments showing that the addition of 11- -retinal to meta- sual pigment regeneration is not known. Here we show that ABCA4 bolically compromised photoreceptors results in the accumulation can transport N-11-cis-retinylidene-phosphatidylethanolamine (PE), of lipofuscin-like fluorophores have led to the suggestion that cis cis the Schiff-base conjugate of 11- -retinal and PE, from the lumen ABCA4 may play a more important role in the removal of 11- - NEUROSCIENCE to the cytoplasmic leaflet of disk membranes. This transport function retinal from photoreceptor outer segments although the mecha- together with chemical isomerization to its all-trans isomer and re- nism remains to be determined (11). ductiontoall-trans-retinol by RDH can prevent the accumulation of In this study we show that ABCA4 can transport the 11-cis excess 11-cis-retinal and its Schiff-base conjugate and the formation isomer of N-retinylidene-PE from the lumen to the cytoplasmic of toxic bisretinoid compounds as found in ABCA4-deficient mice and leaflet of membranes. This transport activity together with the individuals with Stargardt macular degeneration. This segment of the chemical isomerization of N-11-cis-retinylidene-PE to N-all-trans- cis- trans visual cycle in which excess 11- retinal is converted to all- - retinyldiene-PE and reduction of all-trans-retinal to all-trans-reti- retinol provides a rationale for the unusually high content of PE nol can remove excess 11-cis-retinal from disk membranes through and its long-chain unsaturated docosahexaenoyl group in photore- ceptor membranes and adds insight into the molecular mechanisms the visual cycle, thereby preventing the buildup of potentially toxic responsible for Stargardt macular degeneration. retinal and its bisretinoid condensation products. The high content of PE in disk membranes together with the long-chain docosa- ABC transporters | Stargardt disease | retinoids | photoreceptor hexaenoyl acid (DHA) group play crucial roles in the trapping of degeneration | retinal pigment epithelial cells 11-cis-retinal and enhancing the rate of chemical isomerization of N-11-cis-retinylidene-PE to its all-trans isomer. he visual cycle plays a crucial role in the removal of all-trans- Tretinal from photoreceptor cells following photoexcitation Significance and its conversion to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells (1). Deficient clear- ABCA4 is an ATP-binding cassette transporter encoded by the ance of all-trans-retinal and its Schiff-base conjugate N-retinylidene- gene responsible for Stargardt macular degeneration, an inheri- phosphatidylethanolamine (PE) from rod and cone photoreceptor ted retinopathy associated with severe vision loss. Previous outer segments results in condensation reactions which produce studies have shown that ABCA4 facilitates the clearance of all- a mixture of bisretinoid products including the pyridinium bisreti- trans-retinal from photoreceptor disc membranes following noid compound A2PE and its hydrolytic product A2E (2, 3). These photoexcitation. More recent studies implicate excess 11-cis-ret- bisretinoid compounds accumulate as lipofuscin deposits in retinal inal in the etiology of Stargardt disease. In this study we show N cis pigment epithelial (RPE) cells upon phagocytosis of outer segments the ABCA4 can transport the -11- -retinylidene-phosphatidyl- cis and have been implicated in the pathology of a number of retinal ethanolamine (PE), the Schiff-base adduct of 11- -retinal and PE, degenerative diseases. This is particularly evident in autosomal re- across membranes. This transport activity together with chemical isomerization of N-11-cis-retinylidene-PE to its all-trans isomer cessive Stargardt macular degeneration in which mutations in the and reduction to all-trans-retinol can prevent the accumulation of ATP-binding cassette (ABC) transporter ABCA4 which impair the cis N excess 11- -retinal and potentially toxic bisretinoid compounds -retinylidene-PE transport activity of ABCA4 cause a buildup of implicated in Stargardt and related retinal degenerative diseases. lipofuscin, atrophy of the central retina, and severe progressive loss – in vision (4 8). Author contributions: R.S.M. designed research; F.Q. performed research; F.Q. and R.S.M. In initial studies, Abca4 knockout mice were reported to show analyzed data; and F.Q. and R.S.M. wrote the paper. a light-dependent accumulation of all-trans-retinal, PE, and The authors declare no conflict of interest. N-retinylidene-PE in photoreceptors and lipofuscin and A2E in This article is a PNAS Direct Submission. RPE (9). This led to a model in which ABCA4 functions as a 1To whom correspondence should be addressed. E-mail: [email protected]. trans N lipid transporter flipping the all- isomer of -retinylidene- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. PE from the lumen to the cytoplasmic leaflet of photoreceptor 1073/pnas.1400780111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1400780111 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 Fig. 1. ATP-dependent retinoid transport activity from proteoliposomes reconstituted with ABCA4 to acceptor DOPE/DOPC vesicles. (A)[3H]-labeled 11-cis-retinal transfer with the addition (arrow) of 1 mM ATP (◇), AMP-PNP (□), or no addition (*); (B)[3H]-labeled all-trans-retinal with the addition of 1 mM ATP (▲), AMP- PNP (□), or no addition (*). (C) ATP-dependent retinal transfer activity as a function of 11-cis-retinal (o) and all-trans-retinal (▲). Solid line shows best-fit sigmoidal curve for 11-cis-retinal (K0.5 of 6.1 ± 0.4 μM and a Hill coefficient of 1.6 ± 0.3) and for all-trans-retinal (K0.5 of 6.9 ± 0.4 μM and a Hill coefficient of 1.7 ± 0.3). Data are the mean ± SD for three independent experiments. Results liposomes had a basal ATPase activity which was stimulated ABCA4 Transports both the 11-cis and all-trans Isomers of N- threefold by the 11-cis-retinal isomer and twofold by the all-trans retinylidene-PE. To explore the role of ABCA4 in the clearance isomer. Both isomers displayed Michaelis–Menten kinetics with K ∼ ± of 11-cis-retinal from photoreceptors, we first determined if similar apparent m values ( 0.23 0.02 mM) for ATP in the ABCA4 can transport the 11-cis isomer of N-retinylidene-PE presence of 40 μM retinal and showed a similar dependence of across membranes. This was measured using a biochemical assay ATPase activity on retinoid concentration (Fig. 2B). which quantifies the ATP-dependent transfer of radiolabeled We further investigated the possible role of 11-cis-retinal in 11-cis-retinal from donor dioleylphosphatidylethanolamine (DOPE)/ regulating the activity of ABCA4 because it had been reported dioleylphosphatidylcholine (DOPC) proteoliposomes reconstituted previously that 11-cis-retinal binds with high affinity to the bac- with ABCA4 to acceptor liposomes, a reaction driven by the terial expressed nucleotide-binding domain 1 (NBD1) of ABCA4 ATP-dependent transport or flipping of N-11-cis-retinylidene-PE (15). A modest increase in retinal-stimulated ATPase activity across the proteoliposome membrane by ABCA4 (6). The resulting was observed at higher (>20 μM) 11-cis-retinal concentrations in higher content of N-11-cis-retinylidene-PEontheouterleafletofthe the presence of 40 μM all-trans-retinal (Fig. 2C). This increase in proteoliposome, i.e., the side containing the ATP accessible nucle- activity, however, can be attributed to the enhanced ATPase otide-binding domains of ABCA4, together with dissociation into activation of ABCA4 by the 11-cis isomer together
Recommended publications
  • ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Chemicals and Drugs Commons, and the Medical Sciences Commons Recommended Citation Fukuda, Yu , "ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters" (2008). Theses and Dissertations (ETD). Paper 345. http://dx.doi.org/10.21007/etd.cghs.2008.0100. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Interdisciplinary Program Research Advisor John D. Schuetz, Ph.D. Committee Linda Hendershot, Ph.D. James I. Morgan, Ph.D. Anjaparavanda P. Naren, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0100 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/345 ABCB6 IS A PORPHYRIN TRANSPORTER WITH A NOVEL TRAFFICKING SIGNAL THAT
    [Show full text]
  • Transcriptional and Post-Transcriptional Regulation of ATP-Binding Cassette Transporter Expression
    Transcriptional and Post-transcriptional Regulation of ATP-binding Cassette Transporter Expression by Aparna Chhibber DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmaceutical Sciences and Pbarmacogenomies in the Copyright 2014 by Aparna Chhibber ii Acknowledgements First and foremost, I would like to thank my advisor, Dr. Deanna Kroetz. More than just a research advisor, Deanna has clearly made it a priority to guide her students to become better scientists, and I am grateful for the countless hours she has spent editing papers, developing presentations, discussing research, and so much more. I would not have made it this far without her support and guidance. My thesis committee has provided valuable advice through the years. Dr. Nadav Ahituv in particular has been a source of support from my first year in the graduate program as my academic advisor, qualifying exam committee chair, and finally thesis committee member. Dr. Kathy Giacomini graciously stepped in as a member of my thesis committee in my 3rd year, and Dr. Steven Brenner provided valuable input as thesis committee member in my 2nd year. My labmates over the past five years have been incredible colleagues and friends. Dr. Svetlana Markova first welcomed me into the lab and taught me numerous laboratory techniques, and has always been willing to act as a sounding board. Michael Martin has been my partner-in-crime in the lab from the beginning, and has made my days in lab fly by. Dr. Yingmei Lui has made the lab run smoothly, and has always been willing to jump in to help me at a moment’s notice.
    [Show full text]
  • The Role of Mitochondrial ATP-Binding Cassette Transporter
    The Role of Mitochondrial ATP-Binding Cassette Transporter ABCB6 in Metabolism and Energy Balance By © 2019 Robert T Tessman Submitted to the graduate degree program in Toxicology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Committee Chair: Partha Kasturi, PhD Bruno Hagenbuch, PhD Hao Zhu, PhD Tiangang Li, PhD Luciano DiTacchio, PhD Date Defended: April 19th, 2019Title Page ii The dissertation committee for Robert T Tessman certifies that this is the approved version of the following dissertation: The role of Mitochondrial ATP-Binding Cassette Transporter ABCB6 in Metabolism and Energy Balance Committee Chair: Partha Kasturi, PhD Acceptance Page Date Approved: April 19th, 2019 iii Abstract Obesity and the associated health risks represent a world-wide health and financial crisis. Lack of physical activity combined with excessive caloric intake are the root cause of the problem. Despite the increased advocation for healthy lifestyle choices, the trend has yet to reverse and indeed, seems to be on the rise especially among pre- teens and adolescents, a constituent that had not been previously part of the obesity epidemic. Mitochondria are the “fuel-burners” of the body and like other combustion devices, become inefficient in the context of fuel surplus. Moreover, with chronic over-feeding, the physiological mechanisms that regulate energy balance become permanently dysfunctional leading to the progression of pathologies such as Type II diabetes and cardiovascular disease. Medical and scientific evidence confirms that mitochondria are integral to the responses necessary to adapt to over-nutrition. However, success in mitochondria- based therapies has been extremely limited in the context of metabolic diseases.
    [Show full text]
  • Interindividual Differences in the Expression of ATP-Binding
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/02/02/dmd.117.079061.DC1 1521-009X/46/5/628–635$35.00 https://doi.org/10.1124/dmd.117.079061 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:628–635, May 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Special Section on Transporters in Drug Disposition and Pharmacokinetic Prediction Interindividual Differences in the Expression of ATP-Binding Cassette and Solute Carrier Family Transporters in Human Skin: DNA Methylation Regulates Transcriptional Activity of the Human ABCC3 Gene s Tomoki Takechi, Takeshi Hirota, Tatsuya Sakai, Natsumi Maeda, Daisuke Kobayashi, and Ichiro Ieiri Downloaded from Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.) Received October 19, 2017; accepted January 30, 2018 dmd.aspetjournals.org ABSTRACT The identification of drug transporters expressed in human skin and levels. ABCC3 expression levels negatively correlated with the methylation interindividual differences in gene expression is important for understanding status of the CpG island (CGI) located approximately 10 kilobase pairs the role of drug transporters in human skin. In the present study, we upstream of ABCC3 (Rs: 20.323, P < 0.05). The reporter gene assay revealed evaluated the expression of ATP-binding cassette (ABC) and solute carrier a significant increase in transcriptional activity in the presence of CGI.
    [Show full text]
  • Whole-Exome Sequencing Identifies Novel Mutations in ABC Transporter
    Liu et al. BMC Pregnancy and Childbirth (2021) 21:110 https://doi.org/10.1186/s12884-021-03595-x RESEARCH ARTICLE Open Access Whole-exome sequencing identifies novel mutations in ABC transporter genes associated with intrahepatic cholestasis of pregnancy disease: a case-control study Xianxian Liu1,2†, Hua Lai1,3†, Siming Xin1,3, Zengming Li1, Xiaoming Zeng1,3, Liju Nie1,3, Zhengyi Liang1,3, Meiling Wu1,3, Jiusheng Zheng1,3* and Yang Zou1,2* Abstract Background: Intrahepatic cholestasis of pregnancy (ICP) can cause premature delivery and stillbirth. Previous studies have reported that mutations in ABC transporter genes strongly influence the transport of bile salts. However, to date, their effects are still largely elusive. Methods: A whole-exome sequencing (WES) approach was used to detect novel variants. Rare novel exonic variants (minor allele frequencies: MAF < 1%) were analyzed. Three web-available tools, namely, SIFT, Mutation Taster and FATHMM, were used to predict protein damage. Protein structure modeling and comparisons between reference and modified protein structures were performed by SWISS-MODEL and Chimera 1.14rc, respectively. Results: We detected a total of 2953 mutations in 44 ABC family transporter genes. When the MAF of loci was controlled in all databases at less than 0.01, 320 mutations were reserved for further analysis. Among these mutations, 42 were novel. We classified these loci into four groups (the damaging, probably damaging, possibly damaging, and neutral groups) according to the prediction results, of which 7 novel possible pathogenic mutations were identified that were located in known functional genes, including ABCB4 (Trp708Ter, Gly527Glu and Lys386Glu), ABCB11 (Gln1194Ter, Gln605Pro and Leu589Met) and ABCC2 (Ser1342Tyr), in the damaging group.
    [Show full text]
  • ABCA7 and Pathogenic Pathways of Alzheimer's Disease
    brain sciences Review ABCA7 and Pathogenic Pathways of Alzheimer’s Disease Tomonori Aikawa, Marie-Louise Holm ID and Takahisa Kanekiyo * Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; [email protected] (T.A.); [email protected] (M.-L.H.) * Correspondence: [email protected]; Tel.: +1-904-953-2483 Received: 28 December 2017; Accepted: 3 February 2018; Published: 5 February 2018 Abstract: The ATP-binding cassette (ABC) reporter family functions to regulate the homeostasis of phospholipids and cholesterol in the central nervous system, as well as peripheral tissues. ABCA7 belongs to the A subfamily of ABC transporters, which shares 54% sequence identity with ABCA1. While ABCA7 is expressed in a variety of tissues/organs, including the brain, recent genome-wide association studies (GWAS) have identified ABCA7 gene variants as susceptibility loci for late-onset Alzheimer’s disease (AD). More important, subsequent genome sequencing analyses have revealed that premature termination codon mutations in ABCA7 are associated with the increased risk for AD. Alzheimer’s disease is a progressive neurodegenerative disease and the most common cause of dementia, where the accumulation and deposition of amyloid-β (Aβ) peptides cleaved from amyloid precursor protein (APP) in the brain trigger the pathogenic cascade of the disease. In consistence with human genetic studies, increasing evidence has demonstrated that ABCA7 deficiency exacerbates Aβ pathology using in vitro and in vivo models. While ABCA7 has been shown to mediate phagocytic activity in macrophages, ABCA7 is also involved in the microglial Aβ clearance pathway. Furthermore, ABCA7 deficiency results in accelerated Aβ production, likely by facilitating endocytosis and/or processing of APP.
    [Show full text]
  • The ABCA4 2588G>C Stargardt Mutation
    European Journal of Human Genetics (2002) 10, 197 ± 203 ã 2002 Nature Publishing Group All rights reserved 1018-4813/02 $25.00 www.nature.com/ejhg ARTICLE The ABCA4 2588G4C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe Alessandra Maugeri*,1, Kris Flothmann2, Nadine Hemmrich3, Sofie Ingvast4, Paula Jorge5, Eva Paloma6, Reshma Patel7, Jean-Michel Rozet8, Jaana Tammur9,10, Francesco Testa11, Susana Balcells6, Alan C Bird12, Han G Brunner1, Carel B Hoyng13, Andres Metspalu9, Francesca Simonelli11, Rando Allikmets10,14, Shomi S Bhattacharya7, Michele D'Urso15, Roser GonzaÁlez-Duarte6, Josseline Kaplan8, Gerard J te Meerman16, RosaÂrio Santos5, Marianne Schwartz17, Guy Van Camp2, Claes Wadelius4, Bernhard HF Weber3 and Frans PM Cremers1 1Department of Human Genetics, University Medical Center Nijmegen, Nijmegen, The Netherlands; 2Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; 3Institute of Human Genetics, Biocenter, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany; 4Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 5Unidade de GeneÁtica Molecular, Instituto de GeneÁtica MeÁdica, PracËa Pedro Nunes 88, 4050-466 Porto, Portugal; 6Departament de GeneÁtica, Universitat de Barcelona, Avda. Diagonal 645, 08028-Barcelona, Spain; 7Department of Molecular Genetics, Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; 8Laboratoire de Recherches sur les Handicaps,
    [Show full text]
  • Supplementary Table 1. Mutated Genes That Contain Protein Domains Identified Through Mutation Enrichment Analysis
    Supplementary Table 1. Mutated genes that contain protein domains identified through mutation enrichment analysis A. Breast cancers InterPro ID Mutated genes (number of mutations) IPR000219 ARHGEF4(2), ECT2(1), FARP1(1), FLJ20184(1), MCF2L2(1), NET1(1), OBSCN(5), RASGRF2(2), TRAD(1), VAV3(1) IPR000225 APC2(2), JUP(1), KPNA5(2), SPAG6(1) IPR000357 ARFGEF2(2), CMYA4(1), DRIM(2), JUP(1), KPNA5(2), PIK3R4(1), SPAG6(1) IPR000533 AKAP9(2), C10orf39(1), C20orf23(1), CUTL1(1), HOOK1(1), HOOK3(1), KTN1(2), LRRFIP1(3), MYH1(3), MYH9(2), NEF3(1), NF2(1), RSN(1), TAX1BP1(1), TPM4(1) IPR000694 ADAM12(3), ADAMTS19(1), APC2(2), APXL(1), ARID1B(1), BAT2(2), BAT3(1), BCAR1(1), BCL11A(2), BCORL1(1), C14orf155(3), C1orf2(1), C1QB(1), C6orf31(1), C7orf11(1), CD2(1), CENTD3(3), CHD5(3), CIC(3), CMYA1(2), COL11A1(3), COL19A1(2), COL7A1(3), DAZAP1(1), DBN1(3), DVL3(1), EIF5(1), FAM44A(1), FAM47B(1), FHOD1(1), FLJ20584(1), G3BP2(2), GAB1(2), GGA3(1), GLI1(3), GPNMB(2), GRIN2D(3), HCN3(1), HOXA3(2), HOXA4(1), IRS4(1), KCNA5(1), KCNC2(1), LIP8(1), LOC374955(1), MAGEE1(2), MICAL1(2), MICAL‐L1(1), MLLT2(1), MMP15(1), N4BP2(1), NCOA6(2), NHS(1), NUP214(3), ODZ1(3), PER1(2), PER2(1), PHC1(1), PLXNB1(1), PPM1E(2), RAI17(2), RAPH1(2), RBAF600(2), SCARF2(1), SEMA4G(1), SLC16A2(1), SORBS1(1), SPEN(2), SPG4(1), TBX1(1), TCF1(2), TCF7L1(1), TESK1(1), THG‐1(1), TP53(18), TRIF(1), ZBTB3(2), ZNF318(2) IPR000909 CENTB1(2), PLCB1(1), PLCG1(1) IPR000998 AEGP(3), EGFL6(2), PRSS7(1) IPR001140 ABCB10(2), ABCB6(1), ABCB8(2) IPR001164 ARFGAP3(1), CENTB1(2), CENTD3(3), CENTG1(2) IPR001589
    [Show full text]
  • The Role of ABCA7 in Alzheimer's Disease: Evidence from Genomics
    Acta Neuropathologica https://doi.org/10.1007/s00401-019-01994-1 REVIEW The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics Arne De Roeck1,2 · Christine Van Broeckhoven1,2 · Kristel Sleegers1,2 Received: 1 February 2019 / Revised: 18 March 2019 / Accepted: 18 March 2019 © The Author(s) 2019 Abstract Genome-wide association studies (GWAS) originally identifed ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large efect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common pre- mature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is signifcantly associated with AD. Furthermore, ABCA7 contains many diferent isoforms and ABCA7 splicing has been shown to associate with AD.
    [Show full text]
  • Atp-Binding Cassette Subfamily C (Abcc) Transporter 1 (Abcc1) and 4 (Abcc4) Independent of Their Drug Efflux Ability Affects Breast Cancer Biology
    Some pages of this thesis may have been removed for copyright restrictions. If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown policy and contact the service immediately ([email protected]) ATP-BINDING CASSETTE SUBFAMILY C (ABCC) TRANSPORTER 1 (ABCC1) AND 4 (ABCC4) INDEPENDENT OF THEIR DRUG EFFLUX ABILITY AFFECTS BREAST CANCER BIOLOGY FLOREN GUY LOW Doctor of Philosophy ASTON UNIVERSITY December 2018 © Floren Guy Low, 2018 Floren Guy Low asserts his moral right to be identified as the author of this thesis. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright belongs to its author and that no quotation from the thesis and no information derived from it may be published without appropriate permission or acknowledgement. 1 Aston University ATP-binding cassette subfamily C (ABCC) transporter 1 (ABCC1) and 4 (ABCC4) independent of their drug efflux ability affects breast cancer biology Floren Guy Low Doctor of Philosophy 2018 Thesis Summary Breast cancer treatment has been a challenge to date, due in part to cancer cells acquiring drug resistance. One of the mechanisms by which resistance can occur is the overexpression of drug efflux pumps such as ATP-binding cassette, subfamily C (ABCC) transporter 1 (ABCC1) and 4 (ABCC4), which are members of ABC transporters. Recently research has shown that these proteins may be implicated in cancer biology independent of cytotoxic drug efflux, but so far little is known about this in regards to breast cancer.
    [Show full text]
  • Rare ABCA7 Variants in 2 German Families with Alzheimer Disease
    ARTICLE OPEN ACCESS Rare ABCA7 variants in 2 German families with Alzheimer disease Patrick May, PhD,* Sabrina Pichler, PhD,* Daniela Hartl, PhD, Dheeraj R. Bobbili, MSc, Manuel Mayhaus, PhD, Correspondence Christian Spaniol, PhD, Alexander Kurz, Prof, Rudi Balling, Prof, Jochen G. Schneider, Prof, Dr. Pichler [email protected] and Matthias Riemenschneider, MD, PhD, Prof Neurol Genet 2018;4:e224. doi:10.1212/NXG.0000000000000224 Abstract Objective The aim of this study was to identify variants associated with familial late-onset Alzheimer disease (AD) using whole-genome sequencing. Methods Several families with an autosomal dominant inheritance pattern of AD were analyzed by whole-genome sequencing. Variants were prioritized for rare, likely pathogenic variants in genes already known to be associated with AD and confirmed by Sanger sequencing using standard protocols. Results We identified 2 rare ABCA7 variants (rs143718918 and rs538591288) with varying penetrance in 2 independent German AD families, respectively. The single nucleotide variant (SNV) rs143718918 causes a missense mutation, and the deletion rs538591288 causes a frameshift mutation of ABCA7. Both variants have previously been reported in larger cohorts but with incomplete segregation information. ABCA7 is one of more than 20 AD risk loci that have so far been identified by genome-wide association studies, and both common and rare variants of ABCA7 have previously been described in different populations with higher frequencies in AD cases than in controls and varying penetrance. Furthermore, ABCA7 is known to be involved in several AD-relevant pathways. Conclusions We conclude that both SNVs might contribute to the development of AD in the examined family members.
    [Show full text]
  • Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response
    International Journal of Molecular Sciences Article Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response Viktor Hlaváˇc 1,2 , Radka Václavíková 1,2, Veronika Brynychová 1,2, Renata Koževnikovová 3, Katerina Kopeˇcková 4, David Vrána 5 , Jiˇrí Gatˇek 6 and Pavel Souˇcek 1,2,* 1 Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; [email protected] (V.H.); [email protected] (R.V.); [email protected] (V.B.) 2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic 3 Department of Oncosurgery, Medicon Services, 140 00 Prague, Czech Republic; [email protected] 4 Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic; [email protected] 5 Department of Oncology, Medical School and Teaching Hospital, Palacky University, 779 00 Olomouc, Czech Republic; [email protected] 6 Department of Surgery, EUC Hospital and University of Tomas Bata in Zlin, 760 01 Zlin, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-267-082-711 Received: 19 November 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105).
    [Show full text]