Organization Control-Flow Graphs Dominators

Total Page:16

File Type:pdf, Size:1020Kb

Organization Control-Flow Graphs Dominators 10/14/2019 Organization • Dominator relation of CFGs Dominators, – postdominator relation control-dependence • Dominator tree and SSA form • Computing dominator relation and tree – Dataflow algorithm – Lengauer and Tarjan algorithm • Control-dependence relation • SSA form 12 Control-flow graphs Dominators START • CFG is a directed graph START • Unique node START from which • In a CFG G, node a is all nodes in CFG are reachable a said to dominate node a • Unique node END reachable from b b all nodes b if every path from • Dummy edge to simplify c c discussion START END START to b contains • Path in CFG: sequence of nodes, de de possibly empty, such that a. successive nodes in sequence are connected in CFG by edge f • Dominance relation: f – If x is first node in sequence and y is last node, we will write the path g relation on nodes g as x * y – If path is non-empty (has at least – We will write a dom b one edge) we will write x + y END if a dominates b END 34 1 10/14/2019 Example Computing dominance relation • Dataflow problem: START START A B C D E F G END A START x xxxxxxx x Domain: powerset of nodes in CFG A x x x x xxx B B x x x xxx N C C Dom(N) = {N} U ∩ Dom(M) D x M ε pred(N) DE E x F xx F G x Find greatest solution. END x G Work through example on previous slide to check this. Question: what do you get if you compute least solution? END 56 Properties of dominance Example of proof • Dominance is • Let us prove that dominance is transitive. – reflexive: a dom a – Given: a dom b and b dom c – anti-symmetric: a dom b and b dom a a = b – Consider any path P: START + c – transitive: a dom b and b dom c a dom c – Since b dom c, P must contain b. – tree-structured: – Consider prefix of P = Q: START + b • a dom c and b dom c a dom b or b dom a – Q must contain a because a dom b. • intuitively, this means dominators of a node are – Therefore P contains a. themselves ordered by dominance 78 2 10/14/2019 Dominator tree example Computing dominator tree START • Inefficient way: START a – Solve dataflow equations to compute full dominance relation b a END c – Build tree top-down c b • Root is START de • For every other node f f d e – Remove START from its dominator set g g – If node is then dominated only by itself, add node as child of START in dominator tree END • Keep repeating this process in the obvious way Check: verify that from dominator tree, you can generate full relation 910 Building dominator tree directly Immediate dominators • Algorithm of Lengauer and Tarjan • Parent of node b in tree, if it exists, is – Based on depth-first search of graph called the immediate dominator of b –O(E*(E)) where E is number of edges in – written as idom(b) CFG – idom not defined for START – Essentially linear time • Intuitively, all dominators of b other than b • Linear time algorithm due to Buchsbaum itself dominate idom(b) et al – In our example, idom(c) = a – Much more complex and probably not efficient to implement except for very large graphs 11 12 3 10/14/2019 Useful lemma Postdominators • Lemma: Given CFG G • Given a CFG G, node b is said to postdominate and edge ab, idom(b) START dominates a node a if every path from a to END contains b. – we write b pdom a to say that b postdominates a • Proof: Otherwise, there is q END a path P: START + a • Postdominance is dominance in reverse CFG that does not contain c idom(b). Concatenating b obtained by reversing direction of all edges and edge ab to path P, we interchanging roles of START and END. a get a path from START to d e • Caveat: a dom b does not necessarily imply b b that does not contain g idom(b) which is a pdom a. contradiction. ab is edge in CFG – See example: a dom b but b does not pdom a idom(b) = q which dominates f 13 14 Obvious properties Control dependence • Postdominance is a tree-structured relation • Intuitive idea: • Postdominator relation can be built using a – node w is control-dependent on a node u if backward dataflow analysis. node u determines whether w is executed • Postdominator tree can be built using Lengauer •Example: and Tarjan algorithm on reverse CFG START • Immediate postdominator: ipdom e START ….. • Lemma: if a b is an edge in CFG G, then if e then S1 else S2 S1 S2 ipdom(a) postdominates b. …. END m END We would say S1 and S2 are control-dependent on e 15 16 4 10/14/2019 Examples (contd.) Example (contd.) • S1 and S3 are control- dependent on f START START • Are they control-dependent on e START e? e ….. • Decision at e does not fully while e do S1; determine if S1 (or S3 is S1 f …. S2 executed) since there is a later END S1 S3 test that determines this • So we will NOT say that S1 n END and S3 are control-dependent END on e – Intuition: control-dependence We would say node S1 is control-dependent on e. m is about “last” decision point It is also intuitive to say node e is control-dependent on itself: • However, f is control- - execution of node e determines whether or not e is executed again. dependent on e, and S1 and S3 are transitively (iteratively) control-dependent on e 17 18 Formal definition of control Example (contd.) dependence • Can a node be control- • Formalizing these intuitions is quite tricky dependent on more than one node? • Starting around 1980, lots of proposed – yes, see example n definitions – nested repeat-until loops t1 • Commonly accepted definition due to • n is control-dependent on t1 and t2 (why?) t2 Ferrane, Ottenstein, Warren (1987) • In general, control- • Uses idea of postdominance dependence relation can be quadratic in size of • We will use a slightly modified definition program due to Bilardi and Pingali which is easier to think about and work with 19 20 5 10/14/2019 Control dependence definition Control dependence definition • First cut: given a CFG G, a node w is control- • Small caveat: what if w = u in previous definition? u dependent on an edge (uv) if – See picture: is u control- dependent on edge uv? – w postdominates v v – Intuition says yes, but – ……. w does not postdominate u definition on previous slides says “u should not • Intuitively, postdominate u” and our – first condition: if control flows from u to v it is definition of postdominance is guaranteed that w will be executed reflexive • Fix: given a CFG G, a node w – second condition: but from u we can reach END is control-dependent on an without encountering w edge (uv) if – so there is a decision being made at u that – w postdominates v determines whether w is executed – if w is not u, w does not postdominate u 21 22 Strict postdominance Example • A node w is said to strictly postdominate a node START u if a b c d e f g –w != u a STARTa xx xx – w postdominates u b fb xx x cd x • That is, strict postdominance is the irreflexive c ce x ab x version of the postdominance relation de • Control dependence: given a CFG G, a node w f is control-dependent on an edge (uv) if – w postdominates v g – w does not strictly postdominate u END 23 24 6 10/14/2019 Computing control-dependence Computing control-dependence relation relation • Control dependence: END given a CFG G, a node w • Compute the postdominator tree is control-dependent on • Overlay each edge uv on pdom tree and determine an edge (uv) if g START nodes in interval [v,ipdom(u)) – w postdominates v • Time and space complexity is O(EV). – w does not strictly f postdominate u • Faster solution: in practice, we do not want the full relation, we only make queries c – cd(e): what are the nodes control-dependent on an edge e? • Nodes control dependent d e on edge (uv) are nodes – conds(w): what are the edges that w is control-dependent on? on path up the a b – cdequiv(w): what nodes have the same control-dependences as postdominator tree from v node w? to ipdom(u), excluding a b c d e f g ipdom(u) • It is possible to implement a simple data structure that STARTa xx xx – We will write this as takes O(E) time and space to build, and that answers [v,ipdom(u)) fb xx x these queries in time proportional to output of query • half-open interval in tree cd x (optimal) (Pingali and Bilardi 1997). ce x ab x 25 26 SSA form SSA example • Static single assignment form START START A – Intermediate representation of program in which A Z0:= … every use of a variable is reached by exactly one Z:= … definition Z1 := (Z4,Z0) B p1 B – Most programs do not satisfy this condition p1 • (eg) see program on next slide: use of Z in node F is reached C C …… D Z3:= (Z1,Z3) by definitions in nodes A and C Z:= …. D Z2:= …. – Requires inserting dummy assignments called - G p3 G p3 E functions at merge points in the CFG to “merge” E multiple definitions p2 Z4:= (Z2,Z3) – Simple algorithm: insert -functions for all variables at p2 all merge points in the CFG and rename each real F print(Z) and dummy assignment of a variable uniquely F print(Z4) • (eg) see transformed example on next slide END END 27 28 7 10/14/2019 Minimal-SSA form Example Minimal SSA form • In previous example, dummy assignment Z3 is not really needed since there is no actual assignment to Z in nodes D and G of the original program.
Recommended publications
  • Dominator Tree Certification and Independent Spanning Trees
    Dominator Tree Certification and Independent Spanning Trees∗ Loukas Georgiadis1 Robert E. Tarjan2 October 29, 2018 Abstract How does one verify that the output of a complicated program is correct? One can formally prove that the program is correct, but this may be beyond the power of existing methods. Alternatively one can check that the output produced for a particular input satisfies the desired input-output relation, by running a checker on the input-output pair. Then one only needs to prove the correctness of the checker. But for some problems even such a checker may be too complicated to formally verify. There is a third alternative: augment the original program to produce not only an output but also a correctness certificate, with the property that a very simple program (whose correctness is easy to prove) can use the certificate to verify that the input-output pair satisfies the desired input-output relation. We consider the following important instance of this general question: How does one verify that the dominator tree of a flow graph is correct? Existing fast algorithms for finding dominators are complicated, and even verifying the correctness of a dominator tree in the absence of additional information seems complicated. We define a correctness certificate for a dominator tree, show how to use it to easily verify the correctness of the tree, and show how to augment fast dominator-finding algorithms so that they produce a correctness certificate. We also relate the dominator certificate problem to the problem of finding independent spanning trees in a flow graph, and we develop algorithms to find such trees.
    [Show full text]
  • Maker-Breaker Total Domination Game Valentin Gledel, Michael A
    Maker-Breaker total domination game Valentin Gledel, Michael A. Henning, Vesna Iršič, Sandi Klavžar To cite this version: Valentin Gledel, Michael A. Henning, Vesna Iršič, Sandi Klavžar. Maker-Breaker total domination game. 2019. hal-02021678 HAL Id: hal-02021678 https://hal.archives-ouvertes.fr/hal-02021678 Preprint submitted on 16 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Maker-Breaker total domination game Valentin Gledel a Michael A. Henning b Vesna Irˇsiˇc c;d Sandi Klavˇzar c;d;e January 31, 2019 a Univ Lyon, Universit´eLyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France [email protected] b Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park 2006, South Africa [email protected] c Faculty of Mathematics and Physics, University of Ljubljana, Slovenia [email protected] [email protected] d Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia e Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia Abstract Maker-Breaker total domination game in graphs is introduced as a natu- ral counterpart to the Maker-Breaker domination game recently studied by Duch^ene,Gledel, Parreau, and Renault.
    [Show full text]
  • 2- Dominator Coloring for Various Graphs in Graph Theory
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 2- Dominator Coloring for Various Graphs in Graph Theory A. Sangeetha Devi1, M. M. Shanmugapriya2 1Research Scholar, Department of Mathematics, Karpagam University, Coimbatore-21, India . 2Assistant Professor, Department of Mathematics, Karpagam University, Coimbatore-21, India Abstract: Given a graph G, the dominator coloring problem seeks a proper coloring of G with the additional property that every vertex in the graphG dominates at least 2-color class. In this paper, as an extension of Dominator coloring such that various graph using 2- dominator coloring has been discussed. Keywords: 2-Dominator Coloring, Barbell Graph, Star Graph, Banana Tree, Wheel Graph 1. Introduction of all the pendent vertices of G by „n‟ different colors. Introduce two new colors „퐶푖 „, „퐶푗 ‟alternatively to the In graph theory, coloring and dominating are two important subdividing vertices of G, C0 will dominates „퐶푖 „, „퐶푗 ‟. Also areas which have been extensively studied. The fundamental all the pendent verticies of G dominates at least two color parameter in the theory of graph coloring is the chromatic class. i.e, 1+n+2 ≤ 푛 + 3. Therefore χ푑,2 {C [ 푆1,푛 ] }≤ 푛 + number χ (G) of a graph G which is defined to be the 3 , n≥ 3. minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices receive the Theorem 2.2 same color. If χ (G) = k, we say that G is k-chromatic. Let 푆 be a star graph, then χ (푆 ) =2, n 1,푛 푑,2 1,푛 .2 A dominating set S is a subset of the vertices in a graph such that every vertex in the graph either belongs to S or has a Proof: neighbor in S.
    [Show full text]
  • An Experimental Study of Dynamic Dominators∗
    An Experimental Study of Dynamic Dominators∗ Loukas Georgiadis1 Giuseppe F. Italiano2 Luigi Laura3 Federico Santaroni2 April 12, 2016 Abstract Motivated by recent applications of dominator computations, we consider the problem of dynamically maintaining the dominators of flow graphs through a sequence of insertions and deletions of edges. Our main theoretical contribution is a simple incremental algorithm that maintains the dominator tree of a flow graph with n vertices through a sequence of k edge in- sertions in O(m minfn; kg + kn) time, where m is the total number of edges after all insertions. Moreover, we can test in constant time if a vertex u dominates a vertex v, for any pair of query vertices u and v. Next, we present a new decremental algorithm to update a dominator tree through a sequence of edge deletions. Although our new decremental algorithm is not asymp- totically faster than repeated applications of a static algorithm, i.e., it runs in O(mk) time for k edge deletions, it performs well in practice. By combining our new incremental and decremen- tal algorithms we obtain a fully dynamic algorithm that maintains the dominator tree through intermixed sequence of insertions and deletions of edges. Finally, we present efficient imple- mentations of our new algorithms as well as of existing algorithms, and conduct an extensive experimental study on real-world graphs taken from a variety of application areas. 1 Introduction A flow graph G = (V; E; s) is a directed graph with a distinguished start vertex s 2 V . A vertex v is reachable in G if there is a path from s to v; v is unreachable if no such path exists.
    [Show full text]
  • Improving the Compilation Process Using Program Annotations
    POLITECNICO DI MILANO Corso di Laurea Magistrale in Ingegneria Informatica Dipartimento di Elettronica, Informazione e Bioingegneria Improving the Compilation process using Program Annotations Relatore: Prof. Giovanni Agosta Correlatore: Prof. Lenore Zuck Tesi di Laurea di: Niko Zarzani, matricola 783452 Anno Accademico 2012-2013 Alla mia famiglia Alla mia ragazza Ai miei amici Ringraziamenti Ringrazio in primis i miei relatori, Prof. Giovanni Agosta e Prof. Lenore Zuck, per la loro disponibilità, i loro preziosi consigli e il loro sostegno. Grazie per avermi seguito sia nel corso della tesi che della mia carriera universitaria. Ringrazio poi tutti coloro con cui ho avuto modo di confrontarmi durante la mia ricerca, Dr. Venkat N. Venkatakrishnan, Dr. Rigel Gjomemo, Dr. Phu H. H. Phung e Giacomo Tagliabure, che mi sono stati accanto sin dall’inizio del mio percorso di tesi. Voglio ringraziare con tutto il cuore la mia famiglia per il prezioso sup- porto in questi anni di studi e Camilla per tutto l’amore che mi ha dato anche nei momenti più critici di questo percorso. Non avrei potuto su- perare questa avventura senza voi al mio fianco. Ringrazio le mie amiche e i miei amici più cari Ilaria, Carolina, Elisa, Riccardo e Marco per la nostra speciale amicizia a distanza e tutte le risate fatte assieme. Infine tutti i miei conquilini, dai più ai meno nerd, per i bei momenti pas- sati assieme. Ricorderò per sempre questi ultimi anni come un’esperienza stupenda che avete reso memorabile. Mi mancherete tutti. Contents 1 Introduction 1 2 Background 3 2.1 Annotated Code . .3 2.2 Sources of annotated code .
    [Show full text]
  • Static Analysis for Bsplib Programs Filip Jakobsson
    Static Analysis for BSPlib Programs Filip Jakobsson To cite this version: Filip Jakobsson. Static Analysis for BSPlib Programs. Distributed, Parallel, and Cluster Computing [cs.DC]. Université d’Orléans, 2019. English. NNT : 2019ORLE2005. tel-02920363 HAL Id: tel-02920363 https://tel.archives-ouvertes.fr/tel-02920363 Submitted on 24 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ D’ORLÉANS ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE, PHYSIQUE THÉORIQUE ET INGÉNIERIE DES SYSTÈMES LABORATOIRE D’INFORMATIQUE FONDAMENTALE D’ORLÉANS HUAWEI PARIS RESEARCH CENTER THÈSE présentée par : Filip Arvid JAKOBSSON soutenue le : 28 juin 2019 pour obtenir le grade de : Docteur de l’université d’Orléans Discipline : Informatique Static Analysis for BSPlib Programs THÈSE DIRIGÉE PAR : Frédéric LOULERGUE Professeur, University Northern Arizona et Université d’Orléans RAPPORTEURS : Denis BARTHOU Professeur, Bordeaux INP Herbert KUCHEN Professeur, WWU Münster JURY : Emmanuel CHAILLOUX Professeur, Sorbonne Université, Président Gaétan HAINS Ingénieur-Chercheur, Huawei Technologies, Encadrant Wijnand SUIJLEN Ingénieur-Chercheur, Huawei Technologies, Encadrant Wadoud BOUSDIRA Maître de conference, Université d’Orléans, Encadrante Frédéric DABROWSKI Maître de conference, Université d’Orléans, Encadrant Acknowledgments Firstly, I am grateful to the reviewers for taking the time to read this doc- ument, and their insightful and helpful remarks that have greatly helped its quality.
    [Show full text]
  • Towards Source-Level Timing Analysis of Embedded Software Using Functional Verification Methods
    Fakultat¨ fur¨ Elektrotechnik und Informationstechnik Technische Universitat¨ Munchen¨ Towards Source-Level Timing Analysis of Embedded Software Using Functional Verification Methods Martin Becker, M.Sc. Vollst¨andigerAbdruck der von der Fakult¨at f¨urElektrotechnik und Informationstechnik der Technischen Universit¨atM¨unchenzur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Dr. sc. techn. Andreas Herkersdorf Pr¨ufendeder Dissertation: 1. Prof. Dr. sc. Samarjit Chakraborty 2. Prof. Dr. Marco Caccamo 3. Prof. Dr. Daniel M¨uller-Gritschneder Die Dissertation wurde am 13.06.2019 bei der Technischen Universit¨atM¨uncheneingereicht und durch die Fakult¨atf¨urElektrotechnik und Informationstechnik am 21.04.2020 angenommen. Abstract *** Formal functional verification of source code has become more prevalent in recent years, thanks to the increasing number of mature and efficient analysis tools becoming available. Developers regularly make use of them for bug-hunting, and produce software with fewer de- fects in less time. On the other hand, the temporal behavior of software is equally important, yet rarely analyzed formally, but typically determined through profiling and dynamic testing. Although methods for formal timing analysis exist, they are separated from functional veri- fication, and difficult to use. Since the timing of a program is a product of the source code and the hardware it is running on – e.g., influenced by processor speed, caches and branch predictors – established methods of timing analysis take place at instruction level, where enough details are available for the analysis. During this process, users often have to provide instruction-level hints about the program, which is a tedious and error-prone process, and perhaps the reason why timing analysis is not as widely performed as functional verification.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Hypergraph Partitioning in the Cloud LOTFIFAR, FOAD How to cite: LOTFIFAR, FOAD (2016) Hypergraph Partitioning in the Cloud, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11529/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Hypergraph Partitioning in the Cloud Foad Lotfifar Abstract The thesis investigates the partitioning and load balancing problem which has many applications in High Performance Computing (HPC). The application to be partitioned is described with a graph or hypergraph. The latter is of greater interest as hypergraphs, compared to graphs, have a more general structure and can be used to model more complex relationships between groups of objects such as non- symmetric dependencies. Optimal graph and hypergraph partitioning is known to be NP-Hard but good polynomial time heuristic algorithms have been proposed.
    [Show full text]
  • Control-Flow Analysis
    Control‐Flow Analysis Chapter 8, Section 8.4 Chapter 9, Section 9.6 URL from the course web page [copyrighted material, please do not link to it or distribute it] Control‐Flow Graphs • Control‐flow graph (CFG) for a procedure/method – A node is a basic block: a single‐entry‐single‐exit sequence of three‐address instructions – An edge represents the potential flow of control from one basic block to another • Uses of a control‐flow graph – Inside a basic block: local code optimizations; done as part of the code generation phase – Across basic blocks: global code optimizations; done as part of the code optimization phase – Aspects of code generation: e.g., global register allocation 2 Control‐Flow Analysis • Part 1: Constructing a CFG • Part 2: Finding dominators and post‐dominators • Part 3: Finding loops in a CFG – What exactly is a loop?We cannot simply say “whatever CFG subgraph is generated by while, do‐while, and for statements” – need a general graph‐theoretic definition • Part 4: Static single assignment form (SSA) • Part 5: Finding control dependences – Necessary as part of constructing the program dependence graph (PDG), a popular IR for software tools for slicing, refactoring, testing, and debugging 3 Part 1: Constructing a CFG • Basic block: maximal sequence of consecutive three‐address instructions such that – The flow of control can enter only through the first instruction (i.e., no jumps into the middle of the block) – The flow of control can exit only at the last instruction • Given: the entire sequence of instructions • First, find the leaders (starting instructions of all basic blocks) – The first instruction – The target of any conditional/unconditional jump – Any instruction that immediately follows a conditional 4 or unconditional jump Constructing a CFG • Next, find the basic blocks: for each leader, its basic block contains itself and all instructions up to (but not including) the next leader 1.
    [Show full text]
  • On Dominator Colorings in Graphs
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2007 On dominator colorings in graphs Gera, Ralucca Graph Theory Notes N. Y. / Volume 52, 25-30 http://hdl.handle.net/10945/25542 On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 93943, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a proper coloring of G with the additional property that every vertex in the graph dom- inates an entire color class. We seek to minimize the number of color classes. We study this problem on several classes of graphs, as well as finding general bounds and characterizations. We also show the relation between dominator chromatic number, chromatic number, and domina- tion number. Key Words: coloring, domination, dominator coloring. AMS Subject Classification: 05C15, 05C69. 1 Introduction and motivation A dominating set S is a subset of the vertices in a graph such that every vertex in the graph either belongs to S or has a neighbor in S. The domination number is the order of a minimum dominating set. The topic has long been of interest to researchers [1, 2]. The associated decision problem, dominating set, has been studied in the computational complexity literature [3], and so has the associated optimization problem, which is to find a dominating set of minimum cardinality. Numerous variants of this problem have been studied [1, 2, 4, 5], and here we study one more that was introduced in [6].
    [Show full text]
  • On Dominator Colorings in Graphs
    Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 4, November 2012, pp. 561–571. c Indian Academy of Sciences On dominator colorings in graphs S ARUMUGAM1,2, JAY BAGGA3 and K RAJA CHANDRASEKAR1 1National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH), Kalasalingam University, Anand Nagar, Krishnankoil 626126, India 2School of Electrical Engineering and Computer Science, The University of Newcastle, Newcastle, NSW 2308, Australia 3Department of Computer Science, Ball State University, Muncie, IN 47306, USA E-mail: [email protected]; [email protected]; [email protected] MS received 30 March 2011; revised 30 September 2011 Abstract. A dominator coloring of a graph G is a proper coloring of G in which every vertex dominates every vertex of at least one color class. The minimum number of colors required for a dominator coloring of G is called the dominator chromatic number of G and is denoted by χd (G). In this paper we present several results on graphs with χd (G) = χ(G) and χd (G) = γ(G) where χ(G) and γ(G) denote respectively the chromatic number and the domination number of a graph G. We also prove that if μ(G) is the Mycielskian of G,thenχd (G) + 1 ≤ χd (μ(G)) ≤ χd (G) + 2. Keywords. Dominator coloring; dominator chromatic number; chromatic number; domination number. 1. Introduction ByagraphG = (V, E), we mean a finite, undirected graph with neither loops nor multi- ple edges. The order and size of G are denoted by n =|V | and m =|E| respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [4].
    [Show full text]
  • Decremental Data Structures for Connectivity and Dominators in Directed Graphs∗†
    Decremental Data Structures for Connectivity and Dominators in Directed Graphs∗† Loukas Georgiadis1, Thomas Dueholm Hansen2, Giuseppe F. Italiano3, Sebastian Krinninger4, and Nikos Parotsidis5 1 University of Ioannina, Ioannina, Greece [email protected] 2 Aarhus University, Aarhus, Denmark [email protected] 3 University of Rome Tor Vergata, Rome, Italy [email protected] 4 University of Vienna, Faculty of Computer Science, Vienna, Austria [email protected] 5 University of Rome Tor Vergata, Rome, Italy [email protected] Abstract We introduce a new dynamic data structure for maintaining the strongly connected components (SCCs) of a directed graph (digraph) under edge deletions, so as to answer a rich repertoire of connectivity queries. Our main technical contribution is a decremental data structure that supports sensitivity queries of the form “are u and v strongly connected in the graph G \ w?”, for any triple of vertices u, v, w, while G undergoes deletions of edges. Our data structure processes a sequence of edge deletions in a digraph with n vertices in O(mn log n) total time and O(n2 log n) space, where m is the number of edges before any deletion, and answers the above queries in constant time. We can leverage our data structure to obtain decremental data structures for many more types of queries within the same time and space complexity. For instance for edge- related queries, such as testing whether two query vertices u and v are strongly connected in G \ e, for some query edge e. As another important application of our decremental data structure, we provide the first nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions.
    [Show full text]